Citation: Kaimin WANG, Xiong GU, Na DENG, Hongmei YU, Yanqin YE, Yulu MA. Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009 shu

Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid

Figures(9)

  • 5-(dimethylamino) isophthalic acid (H2dia) and 1H-imidazole (mdz) were used as ligands to react with Zn(Ⅱ) or Cu(Ⅱ) metal salts to generate three new transition metal complexes [Zn(dia)(mdz)2]·2H2O (1), [Cu(dia)(mdz)2 (DMF)] (2) and [Cu(dia)(mdz)2]·H2O (3). Their structures were characterized by single-crystal X-ray diffraction, elemental analysis, IR, thermogravimetric analyses, and Hirshfeld surface analyses. The results revealed that complexes 1 and 2 possess 1D linear chains, each four-coordinated Zn(Ⅱ) of 1 is located in the geometric center of the distorted tetrahedron, but the Cu(Ⅱ) metal center of 2 is five-coordinated and holds a triangular bipyramidal geometry. The zigzag 1D chain of complex 3 was obtained by changing the solvent in the synthesis, and the four-coordinated Cu(Ⅱ) ion is in the centre of the square planar. Results indicate that the geometries of metal centers and synthetic solvents have important effects on the structures of complexes. Abundant intermolecular hydrogen bonding plays an important role in the stability of their 3D supramolecular structures. Thermogravimetric analyses revealed that the complexes have good thermal stabilities. Solid fluorescence analyses showed that complex 1 had excellent fluorescence, but the fluorescence intensities of complexes 2 and 3 were much lower than those of ligands.
  • 加载中
    1. [1]

      Lv H F, Li X Y, Wu D X, Liu Y, Li X X, Wu X J, Yang J L. Enhanced Curie temperature of two-dimensional Cr (Ⅱ) aromatic heterocyclic metal-organic framework magnets via strengthened orbital hybridization[J]. Nano Lett., 2022,22(4):1573-1579. doi: 10.1021/acs.nanolett.1c04398

    2. [2]

      Shi L, Shao D, Wei H Y, Wang X Y. Two interpenetrated cobalt (Ⅱ) metal-organic frameworks with guest-dependent structures and fieldinduced single-ion magnet behaviors[J]. Cryst. Growth Des., 2018,18(9):5270-5278. doi: 10.1021/acs.cgd.8b00714

    3. [3]

      Thorarinsdottir A E, Harris T D. Metalorganic framework magnets[J]. Chem. Rev., 2020,120(16):8716-8789. doi: 10.1021/acs.chemrev.9b00666

    4. [4]

      Li Y, Gao F, Xue J J, Yang G P, Wang Y Y. Selective visible-light photocatalytic oxidation of sulfides and catalytic CO2 fixation by twointerpenetrated photoresponsive MOF-150[J]. Cryst. Growth Des., 2023,23(5):3702-3710. doi: 10.1021/acs.cgd.3c00120

    5. [5]

      SHI M F, LI L F, YANG L Z, YU H M, XIAO M, TANG H J, WANG K M. Synthesis and photocatalytic study of two semi-conductive Co (Ⅱ) coordination polymers[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2022,61(6):74-80.  

    6. [6]

      Woldu A R, Huang Z L, Zhao P X, Hu L S, Astruc D. Electrochemical CO2 reduction (CO2RR) to multicarbon products over copper-based catalysts[J]. Coord. Chem. Rev., 2022,454214340. doi: 10.1016/j.ccr.2021.214340

    7. [7]

      Wang K M, Bai X L, Zhao X, Dong Y Q, Zhao R T, Zhou J, Yu H M, Li L F, Tang H J, Ma Y L. Highly sensitive fluorescence detection of nitrofurazone and nitrofurantoin in milk and honey using a hydrostable Cd (Ⅱ) metal-organic framework[J]. J. Mol. Struct., 2023,1292136114. doi: 10.1016/j.molstruc.2023.136114

    8. [8]

      Wang K M, Dong Y Q, Zhao X, Bai X L, Duan K Y, Ye Y Q, Guo J R, Wang Z L, Tang H J, Ma Y L. Synthesis, structural characterization and fluorescent property of Cd (Ⅱ) coordination polymer containing pyridinium zwitterionic ligand[J]. J. Chem. Crystallogr., 2023,53:407-416. doi: 10.1007/s10870-023-00980-6

    9. [9]

      Wang K M, Yang L Z, Li L F, Ma Y L, Guo J R, Wang Z L, Tang H J, Wang Y N, Zhou J. Highly sensitive and rapid fluorescence detection of chlortetracycline in milk using a water- and pH-stable Zn (Ⅱ) coordination polymer derived from zwitterionic and N-donor ligands[J]. J. Solid State Chem., 2022,316123606. doi: 10.1016/j.jssc.2022.123606

    10. [10]

      Li X, Tan T T Y, Lin Q Y, Lim C C, Goh R, Otake K, Kitagawa S, Loh X J, Lim J Y C. MOF-thermogel composites for differentiated and sustained dual drug delivery[J]. ACS Biomater. Sci. Eng., 2023,9(10):5724-5736. doi: 10.1021/acsbiomaterials.3c01103

    11. [11]

      Pederneira N, Newport K, Lawson S, Rownaghi A A, Rezaei F. Drug delivery on Mg-MOF-74:The effect of drug solubility on pharmacokinetics[J]. ACS Appl. Bio Mater., 2023,6(6):2477-2486. doi: 10.1021/acsabm.3c00275

    12. [12]

      Chen M, Dong R H, Zhang J J, Tang H, Li Q Z, Shao H W, Jiang X Y. Nanoscale metal-organic frameworks that are both fluorescent and hollow for self-indicating drug delivery[J]. ACS Appl. Mater. Interfaces, 2021,13(16):18554-18562. doi: 10.1021/acsami.1c02045

    13. [13]

      Oveisi A R, Delarami H S, Khajeh M, Mirjahanshahi S, Haghani A, Daliran S, Ghaffari-Moghaddam M. Contributions of metalloporphyrin linkers and Zr 6 nodes in gas adsorption on a series of bioinspired zirconium-based metal-organic frameworks: A computational study[J]. J. Mol. Struct., 2020,1204127559. doi: 10.1016/j.molstruc.2019.127559

    14. [14]

      Singh U P, Verma P, Butcher R J. Synthesis of tricarboxylic acid based metal organic frameworks: Structural and gas adsorption studies[J]. J. Mol. Struct., 2021,1224129161. doi: 10.1016/j.molstruc.2020.129161

    15. [15]

      Szufla M, Krawczuk A, Jajko G, Kozyra P, Matoga D. Flattening of a bent sulfonated MOF linker: Impact on structures, flexibility, gas adsorption, CO2/N2 selectivity, and proton conduction[J]. Inorg. Chem., 2022,10:8535-8545.

    16. [16]

      WANG K M, LI L F, SHI M F, YE Y Q, WANG Y N, GUO J R, TANG H J, MA Y L. Crystal structure of Eu(Ⅲ) coordination polymer based on zwitterionic ligand and detection of furacilin[J]. Chinese J. Inorg. Chem., 2022,38(9):1843-1852.  

    17. [17]

      Wang K M, Li L F, Yang L Z, Guo J R, Wang Z L, Tang H J, Ma Y L. A water-stable zwitterionic Zn (Ⅱ) coordination polymer as a luminescent sensor for the nitrofurazone antibiotic in milk[J]. Polyhedron, 2022,226116092. doi: 10.1016/j.poly.2022.116092

    18. [18]

      WANG K M, SHI M F, LI L F, FAN B M, SUN W Q, MA Y L. Construction of water stable Zn (Ⅱ) metal-organic framework iron ion fluorescence probe with mixed ligand[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2023,62(1):142-148.  

    19. [19]

      Wang K M, Dong Y Q, Zhao X, Bai X L, Li L F, Guo J R, Wang Z L, Tang H J, Ma Y L. Highly sensitive fluorescence detection of tetracycline in food samples using a Zn5 cluster-based zwitterionic metal-organic framework[J]. J. Mol. Struct., 2024,1295136725. doi: 10.1016/j.molstruc.2023.136725

    20. [20]

      WANG K M, ZHAO X, BAI X L, DONG Y Q, FAN R F, YU H M, TANG H J, MA Y L. A fluorescence sensor based on Cd (Ⅱ) coordination polymer for recognition of nitrofurantoin[J]. Chinese J. Inorg. Chem., 2023,39(8):1587-1596.  

    21. [21]

      Wang K M, Dong Y Q, Bai X L, Zhao X, Zhao R T, Zhou J, Yu H M, Li L F, Tang H J, Ma Y L. A water-stable Zn (Ⅱ) coordination polymer as a fluorescence sensor for multifunctional detection of Cefixime in milk, honey, beef and chicken[J]. J. Mol. Struct., 2023,1285135495. doi: 10.1016/j.molstruc.2023.135495

    22. [22]

      Wang K M, Dong Y Q, Zhao X, Duan K Y, Zhao R T, Ye Y Q, Guo J R, Pan H, Tang H J, Ma Y L. Sensitive and rapid sensing of dimetridazole in food and environmental samples using a water-stable luminescent zwitterionic Cd (Ⅱ) metal-organic framework[J]. J. Mol. Struct., 2023,1284135458. doi: 10.1016/j.molstruc.2023.135458

    23. [23]

      Wang K M, Yang L Z, Li L F, Dong X Y, Wang Z L, Tang H J, Sun W Q, Ma Y L. A water-stable zwitterionic Cd (Ⅱ) coordination polymer as fluorescent sensor for the detection of oxo-anions and dimetridazole in milk[J]. Arab. J. Chem., 2022,15(11)104295. doi: 10.1016/j.arabjc.2022.104295

    24. [24]

      Wang K M, Bai X L, Zhao X, Duan K Y, Zhao R T, Yu H M, Li L F, Wang Z L, Tang H J, Ma Y L. Construction of a Cd (Ⅱ)-based metalorganic framework for selective luminescent sensing of chloramphenicol in milk and honey samples[J]. J. Mol. Struct., 2023,1293136270. doi: 10.1016/j.molstruc.2023.136270

    25. [25]

      Wu A J, Penner-Hahn J E, Pecoraro V L. Structural, spectroscopic, and reactivity models for the manganese catalases[J]. Chem. Rev., 2004,104:903-938. doi: 10.1021/cr020627v

    26. [26]

      Kitao T, Zhang Y, Kitigawa S, Wang B, Uemura T. Hybridization of MOFs and polymers[J]. Chem. Soc. Rev., 2017,46:3108-3133. doi: 10.1039/C7CS00041C

    27. [27]

      Xin Y, Xu Z J, Meng S, Cao T, Zhang M J, Duan X Y, Zhou Z, Zhang D P. Polynuclear cyanide-bridged heterobimetallic complexes basedon pentacyanometallates: Synthesis, crystal structure and magnetic property[J]. J. Chem. Crystallogr., 2023,53:256-265. doi: 10.1007/s10870-022-00967-9

    28. [28]

      Jin N, Liu Y Q, Liu X M, Zhao Y, Chen H, Wang X Y, Feng Y B, Luo H L, Li W. Synthesis, structure, and improved photo/electrocatalytic performance of Co-and Ni-based metal-organic frameworks (MOFs) by using mixed ligands of 1, 4-bis (4-pyridyl)-2, 3-diaza-1, 3-butadiene (4-bpd) and 1, 3-dicarboxyadamantane (H2adc)[J]. J. Mol. Struct., 2024,1299137147. doi: 10.1016/j.molstruc.2023.137147

    29. [29]

      Xian J Y, Xie X X, Huang Z Y, Liu Y L, Song H Y, Chen Z Q, Ou Y C, Zheng S R. Structure and properties of a mixed-ligand Co-MOF that was synthesized in situ from a single imidazole-pyridyl-tetrazole trifunctional ligand[J]. Cryst. Growth Des., 2023,23(3):1448-1454. doi: 10.1021/acs.cgd.2c01023

    30. [30]

      Rajak R, Saraf M, Mobin S M. Mixed-ligand architected unique topological heterometallic sodium/cobalt-based metal-organic framework for high-performance supercapacitors[J]. Inorg. Chem., 2020,59(3):1642-1652. doi: 10.1021/acs.inorgchem.9b02762

    31. [31]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    32. [32]

      Dolomanov O V, Bourhis L J, Gildea RJ, Howard J A K, Puschmann H. OLEX2:A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726

    33. [33]

      HUANG M L, LUO G G, LIN J Q. Synthesis, crystal structure and fluorescence properties of cadmium complexes of pyridine-2-formal-dehyde hydrazone[J]. Chinese J. Inorg. Chem., 2021,37(2):251-258.  

  • 加载中
    1. [1]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    7. [7]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    8. [8]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    9. [9]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    10. [10]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    11. [11]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    12. [12]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    13. [13]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    14. [14]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    15. [15]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    18. [18]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    19. [19]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    20. [20]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

Metrics
  • PDF Downloads(3)
  • Abstract views(571)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return