Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate
- Corresponding author: Wei ZHANG, zhangwei020@pectrochina.com.cn Haijun HAO, hjhao@mail.buct.edu.cn
Citation:
Anqiu LIU, Long LIN, Dezhi ZHANG, Junyu LEI, Kefeng WANG, Wei ZHANG, Junpeng ZHUANG, Haijun HAO. Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(4): 791-798.
doi:
10.11862/CJIC.20230424
Chen Y, Hung S T, Chou E, Wu H S. Review of polyhydroxyalkanoates materials and other biopolymers for medical applications[J]. Mini Rev. Org. Chem., 2018,15:105-121. doi: 10.2174/1570193X14666170721153036
Wei Y, Wang S, Zhou S. Aluminum alkyl complexes: Synthesis, structure, and application in ROP of cyclic esters[J]. Dalton Trans., 2016,45:4471-4485. doi: 10.1039/C5DT04240B
Gao J, Zhu D, Zhang W, Solan G A, Ma Y, Sun W H. Recent progress in the application of group 1, 2 & 13 metal complexes as catalysts for the ring opening polymerization of cyclic esters[J]. Inorg. Chem. Front., 2019,6:2619-2652.
Théron B, Vaillant-Coindard V, Balan C, Rousselin Y, Bayardon J, Malacea-Kabbara R, Gendre P L. Al and Zn phenoxy-amidine complexes for lactide ROP catalysis[J]. Dalton Trans., 2023,52:7854-7868. doi: 10.1039/D3DT01216F
LI W L, YAN B, SUN C G, SHEN Q M, LIU W Q, MA X L, YANG Z. Aluminum amine compound protected by β-diketiminate ligand: Preparation and enhanced performance as catalyst for ring-opening polymerization of ε-caprolactone[J]. Chinese J. Inorg. Chem., 2021,37:151-156. doi: 10.11862/CJIC.2021.007
Glöckler E, Kapp L, Wölper C, Schumacher M, Gröschel A H, Schulz S. Homoleptic and heteroleptic ketodiiminate zinc complexes for the ROP of cyclic L-lactide[J]. RSC Adv., 2023,13:29879-29885. doi: 10.1039/D3RA06529D
Chen M T, Chen C T. An unprecedented Zn10O4 heteroadamantane cage containing anilido-pyridinate ligand and its activity for ring opening polymerization of L-lactide and ε-caprolactone[J]. Dalton Trans., 2017,46:10181-10184. doi: 10.1039/C7DT01925D
Bouyahyi M, Duchateau R. Metal-based catalysts for controlled ring-opening polymerization of macrolactones: High molecular weight and well-defined copolymer architectures[J]. Macromolecules, 2014,47:517-524. doi: 10.1021/ma402072t
Albertsson A C, Varma I K. Recent developments in ring opening polymerization of lactones for biomedical applications[J]. Biomacromolecules, 2003,4:1466-1486. doi: 10.1021/bm034247a
Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled ring-opening polymerization of lactide and glycolide[J]. Chem. Rev., 2004,104:6147-6176. doi: 10.1021/cr040002s
Darensbourg D J, Karroonnirun O. Stereoselective ring-opening polymerization of rac-lactides catalyzed by chiral and achiral aluminum half-salen complexes[J]. Organometallics, 2010,29:5627-5634. doi: 10.1021/om100518e
Zhang C, Wang Z X. Aluminum and zinc complexes supported by functionalized phenolate ligands: Synthesis, characterization and catalysis in the ring-opening polymerization of ε-caprolactone and rac-lactide[J]. J. Organomet. Chem., 2008,693:3151-3158. doi: 10.1016/j.jorganchem.2008.07.002
Press K, Goldberg I, Kol M. Mechanistic insight into the stereochemical control of lactide polymerization by salan-aluminum catalysts[J]. Angew. Chem. Int. Ed., 2015,54:14858-1486. doi: 10.1002/anie.201503111
Cross E D, Allan L E N, Decken A, Shaver M P. Aluminum salen and salan complexes in the ring-opening polymerization of cyclic esters: Controlled immortal and copolymerization of rac-β-butyrolactone and rac-lactide[J]. J. Polym. Sci. Part A: Polym. Chem., 2013,51:1137-1146. doi: 10.1002/pola.26476
Pepels M P F, Bouyahyi M, Heise A, Duchateau R. Kinetic investigation on the catalytic ring-opening (co)polymerization of (macro)lactones using aluminum salen catalysts[J]. Macromolecules, 2013,46:4324-4334. doi: 10.1021/ma400731c
Yang X Z, Wang L, Yao L H, Zhang J F, Tang N, Wang C, Wu J C. Synthesis, characterization of bulky aluminium alkoxide and application in the ring-opening polymerization of ε-caprolactone[J]. Inorg. Chem. Commun., 2011,14:1711-1714. doi: 10.1016/j.inoche.2011.07.012
Liao T C, Huang Y L, Huang B H, Lin C C. Alcoholysis of methyl aluminium biphenoxides: Excellent initiators for the ring opening polymerisation of ε-caprolactone[J]. Macromol. Chem. Phys., 2003,204:885-892. doi: 10.1002/macp.200390054
Qiao S, Ma W A, Wang Z X. Synthesis and characterization of aluminum and zinc complexes supported by pyrrole-based ligands and catalysis of the aluminum complexes toward the ring-opening polymerization of ε-caprolactone[J]. J. Organomet. Chem., 2011,696:2746-2753. doi: 10.1016/j.jorganchem.2011.04.028
Liu Y, Dong W S, Liu J Y, Li Y S. Living ring-opening homo- and copolymerisation of ε-caprolactone and L-lactide by cyclic β-ketiminato aluminium complexes[J]. Dalton Trans., 2014,43:2244-2251. doi: 10.1039/C3DT52712C
Xiao L, Zhao Y, Qiao S, Sun Z, Santoro O, Redshaw C. Synthesis and structures of mono- and dinuclear aluminium and zinc complexes bearing α-diimine and related ligands, and their use in the ring opening polymerization of cyclic esters[J]. Dalton Trans., 2020,49:1456-1472. doi: 10.1039/C9DT04332B
Chuang H J, Chen H L, Huang B H, Tsai T E, Huang P L, Liao T T, Lin C C. Efficient zinc initiators supported by NNO-tridentate ketiminate ligands for cyclic esters polymerization[J]. J. Polym. Sci. Part A: Polym. Chem., 2013,51:1185-1196. doi: 10.1002/pola.26486
Huang T L, Chen C T. Aluminium complexes containing pyrazolyl-phenolate ligands as catalysts for ring opening polymerization of ε-caprolactone[J]. J. Organomet. Chem., 2013,725:15-21. doi: 10.1016/j.jorganchem.2012.12.003
Sun W H, Shen M, Zhang W, Huang W, Liu S, Redshaw C. Methylaluminium 8-quinolinolates: synthesis, characterization and use in ring-opening polymerization (ROP) of ε-caprolactone[J]. Dalton Trans., 2011,40:2645-2653. doi: 10.1039/c0dt01207f
Chen C T, Liao C H, Peng K F, Chen M T, Huang T L. Synthesis, characterization and catalytic studies of aluminium complexes containing sulfonamido-oxazolinate or - pyrazolinate ligands[J]. J. Organomet. Chem., 2014,753:9-19. doi: 10.1016/j.jorganchem.2013.12.022
Ma W A, Wang Z X. Zinc and aluminum complexes supported by quinoline-based N, N, N-chelate ligands: Synthesis, characterization, and catalysis in the ring-opening polymerization of ε-caprolactone and rac-lactide[J]. Organometallics, 2011,30:4364-4373. doi: 10.1021/om200423g
Yu X F, Wang Z X, Han Z Y. Synthesis and structural characterisation of dinuclear aluminium complexes supported by NNO-tridentate Schiff-base ligands and their catalysis in the ring-opening polymerisation of ε-caprolactone[J]. ChemistrySelect, 2021,6:3403-3408. doi: 10.1002/slct.202100635
Gao B, Duan R L, Pang X, Li X, Qu Z, Shao H L, Wang X H, Chen X S. Zinc complexes containing asymmetrical N, N, O-tridentate ligands and their application in lactide polymerization[J]. Dalton Trans., 2013,42:16334-16342. doi: 10.1039/c3dt52016a
Chen C T, Chan C Y, Huang C A, Chen M T, Peng K F. Zinc anilido-oxazolinate complexes as initiators for ring opening polymerization[J]. Dalton Trans., 2007:4073-4078.
Montag M, Milstein D. Catalytic main-group metal complexes of phosphine-based pincer ligands[J]. Isr. J. Chem., 2023,63e202300082. doi: 10.1002/ijch.202300082
HUANG Q D, LI C L, ZHANG Y, CUI L S, ZHU B C, YI J J, LIU L, HAO H J. Synthesis and catalytic activity of aluminum complexes supported by bis(β-ketimine) and bis(β-diketimine) ligands[J]. Chem. J. Chinese Universities, 2014,35:524-530. doi: 10.7503/cjcu20130664
Zelga K, Pietrzak T, Han T, Justyniak I, Chwojnowska E, Sobota P, Lewiński J. Effectiveness of the oxygenation over classical protonolysis reactions: A case of alkylzinc complexes incorporating an aminoalcoholate ligand[J]. Chem.-Eur. J., 2021,27:14234-14239. doi: 10.1002/chem.202102172
Rhodes B, Chien J C W, Wood J S, Chandrasekaran A, Rausch M D. Synthesis of titanium(Ⅳ) complexes containing 2,6-dimethylaniline substituted amino alcohols and their utilization in ethylene polymerizations[J]. J. Organomet. Chem., 2001,625:95-100. doi: 10.1016/S0022-328X(00)00907-4
Nakano K, Nozaki K, Hiyama T. Asymmetric alternating copolymerization of cyclohexene oxide and CO2 with dimeric zinc complexes[J]. J. Am. Chem. Soc., 2003,125:5501-5510. doi: 10.1021/ja028666b
Cao F, Wang Y, Wang X, Zhang W J, Solan G A, Wang R, Ma Y P, Hao X, Sun W H. Zinc 8-aminotrihydroquinolines appended with pendant N-diphenylphosphinoethyl arms as exceptionally active catalysts for the ROP of ε-CL[J]. Catal. Sci. Technol., 2022,12:6687-6703. doi: 10.1039/D2CY00979J
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Yue Sun , Liming Yang , Yaohang Cheng , Guanghui An , Guangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250
Rong-Nan Yi , Wei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
Zhenjie Yang , Chenyang Hu , Xuan Pang , Xuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340
Jiao Wang , Shuang-Yan Lang , Zhen-Zhen Shen , Gui-Xian Liu , Jian-Xin Tian , Yuan Li , Rui-Zhi Liu , Rui Wen . In situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
Mengjun Sun , Zhi Wang , Jvhui Jiang , Xiaobing Wang , Chuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Wenfeng Shao , Chuanlin Li , Chenggang Wang , Guangsen Du , Shunshun Zhao , Guangmeng Qu , Yupeng Xing , Tianshuo Guo , Hongfei Li , Xijin Xu . Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chinese Chemical Letters, 2025, 36(3): 109531-. doi: 10.1016/j.cclet.2024.109531
Yajun Hou , Chuanzheng Zhu , Qiang Wang , Xiaomeng Zhao , Kun Luo , Zongshuai Gong , Zhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
Hydrogen atoms are omitted for clarity; Symmetry code: A: -x+1, -y+1, -z+1.
Hydrogen atoms except those on N atoms are omitted for clarity; Symmetry code: A: -x+1, -y+1, -z+1.
Hydrogen atoms are omitted for clarity; Symmetry code: A: -x+1, -y+1, -z+1.