Citation: Wenlong LI, Xinyu JIA, Jie LING, Mengdan MA, Anning ZHOU. Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421 shu

Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst

Figures(7)

  • To improve the catalytic activity of the photothermal CO2 hydrogenation In2O3 catalyst, a Mg(OH)2-In(OH)3 precursor was prepared by the homogeneous hydrothermal method, and a Mg-doped In2O3-x (Mg-In2O3-x) catalyst enriched with oxygen vacancies was obtained by the following high-temperature calcination and H2-reducing treatment. The catalyst was evaluated for its photothermal catalytic performance of CO2 hydrogenation in a photothermal fixed -bed reactor. The results demonstrated that Mg-In2O3-x achieved an impressive CO2 conversion rate of 31.20% with a CO production rate of 14.22 mmol·gcat-1·h-1 and selectivity of 100% in the light reaction at 300 ℃. The characterization results confirmed that the Mg doping into the In2O3 lattice promotes the formation of more surface oxygen vacancies, which dramatically increases the response efficiency to visible light and slows down the recombination of photogenerated electron-hole. This is the main reason for the enhancement of the photothermal catalytic performance.
  • 加载中
    1. [1]

      Li Y G, Hao J C, Song H, Zhang F Y, Bai X H, Meng X G, Zhang H Y, Wang S F, Hu Y, Ye J H. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation[J]. Nat. Commun., 2019,10(1):4359-4368. doi: 10.1038/s41467-019-12328-w

    2. [2]

      XU L M, HUANG H B, SHEN J H, YOU Q H. Synthesis of Zn-doped BiOBr with enhanced photoreduction CO2 activity under visible light irradiation[J]. Chinese J. Inorg. Chem., 2020,36(12):2395-2403. doi: 10.11862/CJIC.2020.262

    3. [3]

      Merkel T C, Lin H Q, Wei X T, Baker R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes[J]. J. Membr. Sci., 2010,359(1/2):126-139.

    4. [4]

      Assima G P, Larachi F, Molson J, Beaudong G. Comparative study of five Québec ultramafic mining residues for use in direct ambient carbon dioxide mineral sequestration[J]. Chem. Eng. J., 2014,245:56-64. doi: 10.1016/j.cej.2014.02.010

    5. [5]

      Ling J, Zhou A N, Wang W Z, Jia X Y, Ma M D, Li Y Z. One-pot method synthesis of bimetallic MgCu-MOF-74 and its CO2 adsorption under visible light[J]. ACS Omega, 2022,7(23):19920-19929. doi: 10.1021/acsomega.2c01717

    6. [6]

      Wang L, Ghoussoub M, Wang H, Shao Y, Sun W, Tountas A A, Wood T E, Li H, Loh J Y Y, Dong Y C, Xia M K, Li Y, Wang S H, Jia J, Qiu C Y, Qian C X, Kherani N P, He L, Zhang X H, Ozin G A. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure[J]. Joule, 2018,2(7):1369-1381. doi: 10.1016/j.joule.2018.03.007

    7. [7]

      DONG Y A, FENG Z, ZHU D R. Syntheses of two Mg-based metalorganic frameworks by a coordination competitive strategy and the selective CO2 capture[J]. Chinese J. Inorg. Chem., 2023,39(1):181-190.  

    8. [8]

      Lingampalli S R, Ayyub M M, Rao C N R. Recent progress in the photocatalytic reduction of carbon dioxide[J]. ACS Omega, 2017,2(6):2740-2748. doi: 10.1021/acsomega.7b00721

    9. [9]

      Ameta R, Panchal S, Ameta N, Ameta S C. Photocatalytic reduction of carbon dioxide[J]. Mater. Sci. Forum, 2013,764:83-96. doi: 10.4028/www.scientific.net/MSF.764.83

    10. [10]

      DUAN F Y, ZHOU A N, CHEN F X, LING J, MA M D, JIA X Y. Controllable preparation and photocatalytic performance of graphitic carbon nitride nanosheets[J]. Journal of the Chinese Ceramic Society, 2021,49(10):2053-2060.  

    11. [11]

      MA M D, ZHOU A N, DUAN F Y, JIA X Y, LING J. Preparation of Ti1Li3Al2-LDHs/g-C3N4 composites and its photocatalytic properties in CO2-toluene reaction system[J]. Acta Materiae Compositae Sinica, 2023,40(3):1522-1533.  

    12. [12]

      XU L L, ZHOU M T, YANG A L, WANG J X, ZHOU T F, ZHANG Y. Preparation of dumbbell-like magnetic gold mesoporous silicon microspheres and determination of magnetic/photo thermo and catalytic performance[J]. Chinese J. Inorg. Chem., 2019,35(6):971-977.  

    13. [13]

      Li Z H, Liu J J, Zhao Y F, Shi R, Waterhouse G I N, Wang Y S, Wu L Z, Tung C H, Zhang T R. Photothermal hydrocarbon synthesis using alumina-supported cobalt metal nanoparticle catalysts derived from layered-double-hydroxide nanosheets[J]. Nano Energy, 2019,60:467-475. doi: 10.1016/j.nanoen.2019.03.069

    14. [14]

      Wang J C, Qiao X, Shi W N, Gao H L, Guo L C. Enhanced photothermal selective conversion of CO2 to CH4 in water vapor over rod-like Cu and N co-doped TiO2[J]. Chin. J. Struct. Chem., 2022,41(12):33-42.

    15. [15]

      Deng B W, Song H, Wang Q, Hong J N, Song S, Zhang Y W, Peng K, Zhang H W, Kako T, Ye J H. Highly efficient and stable photothermal catalytic CO2 hydrogenation to methanol over Ru/In2O3 under atmospheric pressure[J]. Appl. Catal. B-Environ., 2023,327122471. doi: 10.1016/j.apcatb.2023.122471

    16. [16]

      Qi Y H, Song L Z, Ouyang S X, Liang X C, Ning S B, Zhang Q Q, Ye J H. Photoinduced defect engineering: Enhanced photothermal catalytic performance of 2D Black In2O3-x nanosheets with bifunctional oxygen vacancies[J]. Adv. Mater., 2019,32(6)1903915.

    17. [17]

      Wang S, Wang P F, Qin Z F, Yan W J, Dong M, Li J F, Wang J G, Fan W B. Enhancement of light olefin production in CO2 hydrogenation over In2O3-based oxide and SAPO-34 composite[J]. J. Catal., 2020,391:459-470. doi: 10.1016/j.jcat.2020.09.010

    18. [18]

      Qin B, Zhou Z M, Li S G, Gao P. Understanding the structure-performance relationship of cubic In2O3 catalysts for CO2 hydrogenation[J]. J. CO2 Util., 2021,49101543. doi: 10.1016/j.jcou.2021.101543

    19. [19]

      Tao H C, Fan Q, Ma T, Liu S Z, Gysling H, Texter J, Guo F, Sun Z Y. Two-dimensional materials for energy conversion and storage[J]. Prog. Mater. Sci., 2020,111100637. doi: 10.1016/j.pmatsci.2020.100637

    20. [20]

      Wang L, Dong Y C, Yan T J, Hu Z X, Ali F M, Meira D M, Duchesne P N, Loh J Y Y, Qiu C Y, Storey E E, Xu Y F, Sun W, Ghoussoub M, Kherani N P, Helmy A S, Ozin G A. Black indium oxide a photothermal CO2 hydrogenation catalyst[J]. Nat. Commun., 2020,11(1)2432. doi: 10.1038/s41467-020-16336-z

    21. [21]

      Yang Y X, Pan Y X, Tu X, Liu C J. Nitrogen doping of indium oxide for enhanced photocatalytic reduction of CO2 to methanol[J]. Nano Energy, 2022,101107613. doi: 10.1016/j.nanoen.2022.107613

    22. [22]

      Zhu X W, Yang J M, Zhu X L, Yuan J J, Zhou M, She X J, Yu Q, Song Y H, She Y B, Hua Y J, Li H M, Xu H. Exploring deep effects of atomic vacancies on activating CO2 photoreduction via rationally designing indium oxide photocatalysts[J]. Chem. Eng. J., 2021,422129888. doi: 10.1016/j.cej.2021.129888

    23. [23]

      Zheng M, Liu J N, Xiao X D, Wang H L, Jiang B J, Li Q, Liu M, Zhao C, Zhang L P, Zhou J. Creation of Mo active sites on indium oxide microrods for photocatalytic amino acid production[J]. Sci. China Mater., 2021,65(5):1285-1293.

    24. [24]

      Sil A, Deck M J, Goldfine E A, Zhang C, Patel S V, Flynn S, Liu H Y, Chien P H, Poeppelmeier K R, Dravid V P, Bedzyk M J, Medvedeva J E, Hu Y Y, Facchetti A, Marks T J. Fluoride doping in crystalline and amorphous indium oxide semiconductors[J]. Chem. Mat., 2022,34(7):3253-3266. doi: 10.1021/acs.chemmater.2c00053

    25. [25]

      YANG F F, ZHAO S X, ZHOU W, NI Z H. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol[J]. CIESC J., 2023,74(6):3366-3374.  

    26. [26]

      Qi Y H, Jiang J W, Liang X C, Ouyang S X, Mi W B, Ning S B, Zhao L, Ye J H. Fabrication of black In2O3 with dense oxygen vacancy through dual functional carbon doping for enhancing photothermal CO2 hydrogenation[J]. Adv. Funct. Mater., 2021,31(22)2100908. doi: 10.1002/adfm.202100908

    27. [27]

      Das A, Liu D Y, Wary R R, Vasenko A S, Prezhdo O V, Nair R G. Enhancement of photocatalytic and photoelectrochemical performance of ZnO by Mg doping: Experimental and density functional theory insights[J]. J. Phys. Chem. Lett., 2023,14(18):4134-4141. doi: 10.1021/acs.jpclett.3c00736

    28. [28]

      Wang J, Sun K Y, Jia X Y, Liu C J. CO2 hydrogenation to methanol over Rh/In2O3 catalyst[J]. Catal. Today, 2021,365:341-348. doi: 10.1016/j.cattod.2020.05.020

    29. [29]

      Guo C F, Li L, Chen F, Ning J Q, Zhong Y J, Hu Y. One-step phosphorization preparation of gradient-P-doped CdS/CoP hybrid nanorods having multiple channel charge separation for photocatalytic reduction of water[J]. J. Colloid Interface Sci., 2021,596:431-441. doi: 10.1016/j.jcis.2021.03.170

    30. [30]

      Li R, Sun L M, Zhan W W, Li Y A, Wang X J, Han X G. Engineering an effective noble-metal-free photocatalyst for hydrogen evolution: Hollow hexagonal porous micro-rods assembled from In2O3@carbon core-shell nanoparticles[J]. J. Mater. Chem. A, 2018,6(32):15747-15754. doi: 10.1039/C8TA04916E

    31. [31]

      Shen C Y, Sun K H, Zhang Z T, Rui N, Jia X Y, Mei D H, Liu C J. Highly active Ir/In2O3 catalysts for selective hydrogenation of CO2 to methanol: Experimental and theoretical studies[J]. ACS Catal., 2021,11(7):4036-4046. doi: 10.1021/acscatal.0c05628

    32. [32]

      Fan Y J, Wu S F. A graphene-supported copper-based catalyst for the hydrogenation of carbon dioxide to form methanol[J]. J. CO2 Util., 2016,16:150-156. doi: 10.1016/j.jcou.2016.07.001

    33. [33]

      Rui N, Wang Z Y, Sun K H, Ye J Y, Ge Q F, Liu C J. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Appl. Catal. B-Environ., 2017,218:488-497. doi: 10.1016/j.apcatb.2017.06.069

    34. [34]

      Jia X Y, Sun K H, Wang J, Shen C Y, Liu C J. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst[J]. J. Energy Chem., 2020,50:409-415. doi: 10.1016/j.jechem.2020.03.083

    35. [35]

      Yan T J, Li N, Wang L L, Ran W G, Duchesne P N, Wan L L, Nguyen N T, Wang L, Xia M K, Ozin G A. Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation[J]. Nat. Commun., 2020,11(1)6095. doi: 10.1038/s41467-020-19997-y

    36. [36]

      Chen Y, Li Y G, Luo N D, Shang W K, Shi S S, Li H J, Liang Y D, Zhou A N. Kinetic comparison of photocatalysis with H2O2-free photoFenton process on BiVO4 and the effective antibiotic degradation[J]. Chem. Eng. J., 2022,429132577. doi: 10.1016/j.cej.2021.132577

    37. [37]

      He L, Wood T E, Wu B, Dong Y C, Hoch L B, Reyes L M, Wang D, Kübel C, Qian C X, Jia J, Liao K, Brien P G O', Sandhel A, Loh J Y Y, Szymanski P, Kherani N P, Sum T C, Mims C A, Ozin G A. Spatial separation of charge carriers in In2O3-x(OH)y nanocrystal superstructures for enhanced gas-phase photocatalytic activity[J]. ACS Nano, 2016,10(5):5578-5586. doi: 10.1021/acsnano.6b02346

    38. [38]

      Li L, Guo C F, Shen J L, Ning J Q, Zhong Y J, Hu Y. Construction of sugar-gourd-shaped CdS/Co1-xS hollow hetero-nanostructure as an efficient Z-scheme photocatalyst for hydrogen generation[J]. Chem. Eng. J., 2020,400125925. doi: 10.1016/j.cej.2020.125925

    39. [39]

      Sayed M, Xu F Y, Kuang P Y, Low J X, Wang S Y, Zhang L Y, Yu J G. Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres[J]. Nat. Commun., 2021,12(1)4936. doi: 10.1038/s41467-021-25007-6

    40. [40]

      Su T M, Men C Z, Chen L Y, Chu B X, Luo X, Ji H B, Chen J H, Qin Z Z. Sulfur vacancy and Ti3C2Tx cocatalyst synergistically boosting interfacial charge transfer in 2D/2D Ti3C2Tx/ZnIn2S4 heterostructure for enhanced photocatalytic hydrogen evolution[J]. Adv. Sci., 2022,92103715. doi: 10.1002/advs.202103715

    41. [41]

      Yu X Y, Chen Y J, Zhang Q Y, Yin Y J, Sun D, Ru Y X, Tian G H. Carbon and nitrogen co-doped In2O3 porous nanosheets with oxygen vacancies for remarkable photocatalytic CO2 conversion[J]. Surf. Interfaces, 2023,38102789. doi: 10.1016/j.surfin.2023.102789

    42. [42]

      Bai S, Zhang N, Gao C, Xiong Y J. Defect engineering in photocatalytic materials[J]. Nano Energy, 2018,53:296-336. doi: 10.1016/j.nanoen.2018.08.058

    43. [43]

      Pan R R, Liu J, Zhang J T. Defect engineering in 2D photocatalytic materials for CO2 reduction[J]. ChemNanoMat, 2021,7(7):737-747. doi: 10.1002/cnma.202100087

    44. [44]

      Sun K H, Rui N, Zang Z T, Sun Z Y, Ge Q F, Liu C J. A highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability[J]. Green Chem., 2020,22(15):5059-5066. doi: 10.1039/D0GC01597K

  • 加载中
    1. [1]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    3. [3]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    4. [4]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    5. [5]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    9. [9]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    10. [10]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    11. [11]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    12. [12]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    13. [13]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    14. [14]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    20. [20]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

Metrics
  • PDF Downloads(18)
  • Abstract views(794)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return