Citation: Botao QU, Qian WANG, Xiaogang NING, Yuxin ZHOU, Ruiping ZHANG. Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416 shu

Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle

Figures(5)

  • A dual-targeting melanin nanoparticle (MNP-TPP-HA) was constructed by grafting the carboxyl groups of hyaluronic acid (HA) and (4-carboxybutyl) triphenylphosphonium bromide (TPP) onto the surface of polyethylene glycol-amino (PEG-NH2) modified MNP based on 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxy succinimide (NHS) reaction, endowing melanin with the ability of dual active targeting. The fluorescence imaging of in vitro three-dimensional (3D) tumor models and in vivo photoacoustic imaging (PAI) all reveal the excellent target penetration ability of MNP-TPP-HA.
  • 加载中
    1. [1]

      Hanahan D, Weinberg R A. Hallmarks of cancer: The next generation[J]. Cell, 2011,144(5):646-674. doi: 10.1016/j.cell.2011.02.013

    2. [2]

      Giraldo N A, Sanchez-Salas R, Peske J D, Vano Y, Becht E, Petitprez F, Validire P, Ingels A, Cathelineau X, Fridman W H, Sautès-Fridman C. The clinical role of the TME in solid cancer[J]. Br. J. Cancer, 2019,120(1):45-53. doi: 10.1038/s41416-018-0327-z

    3. [3]

      Gong F, Yang N L, Wang X W, Zhao Q, Chen Q, Liu Z, Cheng L. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics[J]. Nano Today, 2020,32100851. doi: 10.1016/j.nantod.2020.100851

    4. [4]

      Ortiz R, Quinonero F, Garcia-Pinel B, Fuel M, Mesas C, Cabeza L, Melguizo C, Prados J. Nanomedicine to overcome multidrug resistance mechanisms in colon and pancreatic cancer: Recent progress[J]. Cancers, 2021,13(9)2058. doi: 10.3390/cancers13092058

    5. [5]

      Mura S, Couvreur P. Nanotheranostics for personalized medicine[J]. Adv. Drug Deliv. Rev., 2012,64(13):1394-1416. doi: 10.1016/j.addr.2012.06.006

    6. [6]

      Overchuk M, Zheng G. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics[J]. Biomaterials, 2018,156:217-237. doi: 10.1016/j.biomaterials.2017.10.024

    7. [7]

      Certo M, Tsai C H, Pucino V, Ho P C, Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments[J]. Nat. Rev. Immunol., 2021,21(3):151-161. doi: 10.1038/s41577-020-0406-2

    8. [8]

      Roma-Rodrigues C, Pombo I, Raposo L, Pedrosa P, Fernandes A R, Baptista P V. Nanotheranostics targeting the tumor microenvironment[J]. Front. Bioeng. Biotechnol., 2019,7197. doi: 10.3389/fbioe.2019.00197

    9. [9]

      Sikkandhar M G, Nedumaran A M, Ravichandar R, Singh S, Santhakumar I, Goh Z C, Mishra S, Archunan G, Gulyás B, Padmanabhan P. Theranostic probes for targeting tumor microenvironment: An overview[J]. Int. J. Mol. Sci., 2017,18(5)1036. doi: 10.3390/ijms18051036

    10. [10]

      d'Ischia M, Napolitano A, Pezzella A, Meredith P, Buehler M. Melanin biopolymers: Tailoring chemical complexity for materials design[J]. Angew. Chem. Int. Ed., 2020,59(28):11196-11205. doi: 10.1002/anie.201914276

    11. [11]

      Qi C, Fu L H, Xu H, Wang T F, Lin J, Huang P. Melanin/polydopamine-based nanomaterials for biomedical applications[J]. Sci. China-Chem., 2019,62(2):162-188. doi: 10.1007/s11426-018-9392-6

    12. [12]

      Qu B T, Zhang X M, Han Y H, Peng X Y, Sun J H, Zhang R P. IR820 functionalized melanin nanoplates for dual-modal imaging and photothermal tumor eradication[J]. Nanoscale Adv., 2020,2(6):2587-2594. doi: 10.1039/D0NA00236D

    13. [13]

      Caldas M, Santos A C, Veiga F, Rebelo R, Reis R L, Correlo V M. Melanin nanoparticles as a promising tool for biomedical applications-a review[J]. Acta Biomater., 2020,105:26-43. doi: 10.1016/j.actbio.2020.01.044

    14. [14]

      Longo D L, Stefania R, Aime S, Oraevsky A. Melanin-based contrast agents for biomedical optoacoustic imaging and theranostic applications[J]. Int. J. Mol. Sci., 2017,18(8)1719. doi: 10.3390/ijms18081719

    15. [15]

      Liu Y L, Ai K L, Ji X Y, Askhatova D, Du R, Lu L H, Shi J J. Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke[J]. J. Am. Chem. Soc., 2017,139(2):856-862. doi: 10.1021/jacs.6b11013

    16. [16]

      Bayer I S. Hyaluronic acid and controlled release: A review[J]. Molecules, 2020,25(11)2649. doi: 10.3390/molecules25112649

    17. [17]

      Lei C, Liu X R, Chen Q B, Li Y, Zhou J L, Zhou L Y, Zou T. Hyaluronic acid and albumin based nanoparticles for drug delivery[J]. J. Control. Release, 2021,331:416-433. doi: 10.1016/j.jconrel.2021.01.033

    18. [18]

      Cheng X X, Feng D, Lv J Y, Cui X M, Wang Y C, Wang Q, Zhang L. Application prospects of triphenylphosphine-based mitochondria- targeted cancer therapy[J]. Cancers, 2023,15(3)666. doi: 10.3390/cancers15030666

    19. [19]

      Gong N Q, Ma X W, Ye X X, Zhou Q F, Chen X A, Tan X L, Yao S K, Huo S D, Zhang T B, Chen S Z, Teng X C, Hu X X, Yu J, Gan Y L, Jiang H D, Li J H, Liang X J. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment[J]. Nat. Nanotechnol., 2019,14(4):379-387. doi: 10.1038/s41565-019-0373-6

    20. [20]

      Mattheolabakis G, Milane L, Singh A, Amiji M M. Hyaluronic acid targeting of CD44 for cancer therapy: From receptor biology to nanomedicine[J]. J. Drug Target., 2015,23(7/8):605-618.

    21. [21]

      Feng G X, Qin W, Hu Q L, Tang B Z, Liu B. Cellular and mitochondrial dual-targeted organic dots with aggregation-induced emission characteristics for image-guided photodynamic therapy[J]. Adv. Healthc. Mater., 2015,4(17):2667-2676. doi: 10.1002/adhm.201500431

    22. [22]

      Luo Z J, Dai Y, Gao H L. Development and application of hyaluronic acid in tumor targeting drug delivery[J]. Acta Pharm. Sin. B, 2019,9(6):1099-1112. doi: 10.1016/j.apsb.2019.06.004

    23. [23]

      Tripodo G, Trapani A, Torre M L, Giammona G, Trapani G, Mandracchia D. Hyaluronic acid and its derivatives in drug delivery and imaging: Recent advances and challenges[J]. Eur. J. Pharm. Biopharm., 2015,97(Part B):400-416.

    24. [24]

      Ashrafizadeh M, Mirzaei S, Gholami M H, Hashemi F, Zabolian A, Raei M, Hushmandi K, Zarrabi A, Voelcker N H, Aref A R, Hamblin M R, Varma R S, Samarghandian S, Arostegi I J, Alzola M, Kumar A P, Thakur V K, Nabavi N, Makvandi P, Tay F R, Orive G. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli‐responsive carriers, co-delivery and resistance suppression[J]. Carbohydr. Polym., 2021,272118491. doi: 10.1016/j.carbpol.2021.118491

    25. [25]

      Hu Q L, Gao M, Feng G X, Liu B. Mitochondria-targeted cancer therapy using a light-up probe with aggregation-induced-emission characteristics[J]. Angew. Chem. Int. Ed., 2014,53(51):14225-14229. doi: 10.1002/anie.201408897

    26. [26]

      Li F, Liu Y J, Dong Y H, Chu Y W, Song N C, Yang D Y. Dynamic assembly of DNA nanostructures in living cells for mitochondrial interference[J]. J. Am. Chem. Soc., 2022,144(10):4667-4677. doi: 10.1021/jacs.2c00823

    27. [27]

      Chang X W, Tang X Y, Liu J, Zhu Z R, Mu W Y, Tang W J, Zhang Y M, Chen X. Precise starving therapy via physiologically dependent photothermal conversion promoted mitochondrial calcification based on multi‐functional gold nanoparticles for effective tumor treatment[J]. Adv. Funct. Mater., 2023,33(35)2303596. doi: 10.1002/adfm.202303596

    28. [28]

      ZHANG C L, ZHANG J J, SHEN Y, LU J C, HUANG F, XU L. A rapid response of mitochondrial targeted fluorescent probe for detecting living cells and hypochlorite in zebrafish[J]. Chinese J. Inorg. Chem., 2022,38(8):1623-1632.  

    29. [29]

      Zhang R P, Fan Q L, Yang M, Cheng K, Lu X M, Zhang L, Huang W, Cheng Z. Engineering melanin nanoparticles as an efficient drug-delivery system for imaging-guided chemotherapy[J]. Adv. Mater., 2015,27(34):5063-5069. doi: 10.1002/adma.201502201

    30. [30]

      Pieper J S, Hafmans T, Veerkamp J H, van Kuppevelt T H. Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects[J]. Biomaterials, 2000,21(6):581-593. doi: 10.1016/S0142-9612(99)00222-7

    31. [31]

      Li Q Q, Liu L T, Huo H Q, Su L C, Wu Y, Lin H X, Ge X G, Mu J, Zhang X, Zheng L T, Song J B. Nanosized Janus AuNR-Pt motor for enhancing NIR-II photoacoustic imaging of deep tumor and Pt2+ ion-based chemotherapy[J]. ACS Nano, 2022,16(5):7947-7960. doi: 10.1021/acsnano.2c00732

    32. [32]

      ZHANG P G, YU D C, CHENG Z W, HE Z P, ZHANG X H, LI H L, ZHANG H Q. Application of folate receptor-targeted CdS quantum dots in imaging of HepG2 cells[J]. Chinese J. Inorg. Chem., 2007,23(9):1662-1666. doi: 10.3321/j.issn:1001-4861.2007.09.031

  • 加载中
    1. [1]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    2. [2]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    3. [3]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    4. [4]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    5. [5]

      Zhihui ZhangRu SunChong BianHongbo WangZhen ZhaoPanpan LvJianzhong LuHaixin ZhangHulie ZengYuanyuan ChenZhijuan Cao . A dual-protease-triggered chemiluminescent probe for precise tumor imaging. Chinese Chemical Letters, 2025, 36(2): 109784-. doi: 10.1016/j.cclet.2024.109784

    6. [6]

      Cheng-Zhe GaoHao-Ran JiaTian-Yu WangXiao-Yu ZhuXiaofeng HanFu-Gen Wu . A dual drug-loaded tumor vasculature-targeting liposome for tumor vasculature disruption and hypoxia-enhanced chemotherapy. Chinese Chemical Letters, 2025, 36(1): 109840-. doi: 10.1016/j.cclet.2024.109840

    7. [7]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    8. [8]

      Miao-Miao ChenMin-Ling ZhangXiao SongJun JiangXiaoqian TangQi ZhangXiuhua ZhangPeiwu Li . Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples. Chinese Chemical Letters, 2025, 36(1): 109785-. doi: 10.1016/j.cclet.2024.109785

    9. [9]

      Qiuye WangYabing SunLiangxue LaiHaijing CuiYonglong YeMing YangWeihao ZhuBo YuanQuanliang MaoWenzhi RenAiguo Wu . MMP-9-responsive probe for fluorescence-magnetic resonance dual-mode imaging of hepatocellular carcinoma models with different metastatic capacities. Chinese Chemical Letters, 2025, 36(4): 110212-. doi: 10.1016/j.cclet.2024.110212

    10. [10]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

    11. [11]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    12. [12]

      Jiahao LiuPeng LiuJunhong DuanQiongxuan XieJie FengHongpei TanZe MiYing LiYunjie LiaoPengfei RongWenhu ZhouXiang Gao . Macrophages-mediated tumor accumulation and deep penetration of bismuth/manganese biomineralized nanoparticles for enhanced radiotherapy. Chinese Chemical Letters, 2024, 35(12): 109632-. doi: 10.1016/j.cclet.2024.109632

    13. [13]

      Yi CaoXiaojiao GeYuanyuan WeiLulu HeAiguo WuJuan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672

    14. [14]

      Lishan XiongXinyuan LiXiaojie LuZhendong ZhangYan ZhangWen WuChenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384

    15. [15]

      Han HanBi-Te ChenJia-Rong DingJin-Ming SiTian-Jiao ZhouYi WangLei XingHu-Lin Jiang . A PDGFRβ-targeting nanodrill system for pancreatic fibrosis therapy. Chinese Chemical Letters, 2024, 35(10): 109583-. doi: 10.1016/j.cclet.2024.109583

    16. [16]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    17. [17]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    18. [18]

      Shaoqing DuXinyong LiuXueping HuPeng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378

    19. [19]

      Lu-Lu HeLan-Tu XiongXin WangYu-Zhen LiJia-Bao LiYu ShiXin DengZi-Ning Cui . Application of inhibitors targeting the type III secretion system in phytopathogenic bacteria. Chinese Chemical Letters, 2025, 36(4): 110044-. doi: 10.1016/j.cclet.2024.110044

    20. [20]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

Metrics
  • PDF Downloads(0)
  • Abstract views(271)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return