Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores
- Corresponding author: Wenjuan JI, jiwj@sxnu.edu.cn Haiying YANG, hyyang@ycu.edu.cn Zhefeng Fan, zhefengfan@163.com
Citation:
Jing SU, Bingrong LI, Yiyan BAI, Wenjuan JI, Haiying YANG, Zhefeng Fan. Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(7): 1337-1346.
doi:
10.11862/CJIC.20230414
Li J, Xia J F, Zhang F F, Wang Z, Liu Q. A novel electrochemical sensor based on copper-based metal-organic framework for the determination of dopamine[J]. J. Chin. Chem. Soc., 2018,65(6):743-749. doi: 10.1002/jccs.201700410
Dogan, Urhan, Özer, DemirÜ. One-pot electrochemical fabrication of SnO-reduced graphene oxide electrodes for amperometric sensing of dopamine[J]. Maced. J. Chem. Chem. Eng., 2021,40(2)299306.
You Q N, Guo Z Y, Zhang R, Chang Z M, Ge M F, Mei Q, Dong W F. Simultaneous recognition of dopamine and uric acid in the presence of ascorbic acid via an intercalated MXene/PPy nanocomposite[J]. Sensors, 2021,21(9):3069-3080. doi: 10.3390/s21093069
Panapimonlawat T, Phanichphant S, Sriwichai S. Electrochemical dopamine biosensor based on poly (3-aminobenzylamine) layer-by-layer self-assembled multilayer thin film[J]. Polymers, 2021,13(9):1488-1504. doi: 10.3390/polym13091488
Kumar E A, Chen T W, Chen S M, Wang T J, Anthuvan A J, AlOmar S Y, Ahmad N, Chang Y H. A disposable electrochemical sensor based on iron molybdate for the analysis of dopamine in biological samples[J]. New J. Chem., 2021,45(26):11644-11651. doi: 10.1039/D1NJ01718G
Duraisamy V, Sudha V, Annadurai K, Kumar S M S, Thangamuthu R. Ultrasensitive simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen on a graphitized porous carbon-modified electrode[J]. New J. Chem., 2021,45(4):1863-1875. doi: 10.1039/D0NJ04806B
Azizpour Moallem Q, Beitollahi H. Electrochemical sensor for simultaneous detection of dopamine and uric acid based on a carbon paste electrode modified with nanostructured Cu-based metal-organic frameworks[J]. Microchem. J., 2022,177107261. doi: 10.1016/j.microc.2022.107261
Fang J J, Yang N N, Gao E Q. Making metal-organic frameworks electron-deficient for ultrasensitive electrochemical detection of dopamine[J]. Electrochem. Commun., 2018,89:32-37. doi: 10.1016/j.elecom.2018.02.014
Roychoudhury A, Francis K A, Patel J, Jha S K, Basu S. A decouplerfree simple paper microchip capillary electrophoresis device for simultaneous detection of dopamine, epinephrine and serotonin[J]. RSC Adv., 2020,10(43):25487-25495. doi: 10.1039/D0RA03526B
Ramadan M A A, Almasri I, Khayal G. Spectrophotometric determination of dopamine in bulk and dosage forms using 2, 4-dinitro-phenylhydrazine[J]. Turk. J. Pharm. Sci., 2020,17(6):679-685. doi: 10.4274/tjps.galenos.2019.25902
Yue J Y, Song L P, Wang Y T, Yang P, Ma Y, Tang B. Fluorescence/colorimetry/smartphone triple-mode sensing of dopamine by a COF-based peroxidase-mimic platform[J]. Anal. Chem., 2022,94(41):14419-14425. doi: 10.1021/acs.analchem.2c03179
Dey M K, Satpati A K. Functionalised carbon nano spheres modified electrode for simultaneous determination of dopamine and uric acid[J]. J. Electroanal. Chem., 2017,787:95-102. doi: 10.1016/j.jelechem.2017.01.035
Zhou Y, Li R C, Zhang G M, Zhang Y, Zhang C, Shuang S. A novel electrochemical sensor based on AuPd/UiO-66-NH2/GN composites for sensitive dopamine detection[J]. Analyst, 2022,147(24):5655-5662. doi: 10.1039/D2AN01538B
Ma J P, Chen G Z, Bai W S, Zheng J. Amplified electrochemical hydrogen peroxide sensing based on Cu-porphyrin metal-organic framework nanofilm and G-quadruplex-hemin DNAzyme[J]. ACS Appl. Mater. Interfaces, 2020,12(52):58105-58112. doi: 10.1021/acsami.0c09254
Kujawska M, Bhardwaj S K, Mishra Y K, Kaushik A. Using graphenebased biosensors to detect dopamine for efficient Parkinson's disease diagnostics[J]. Biosensors, 2021,11(11):433-446. doi: 10.3390/bios11110433
FANG Z L, WANG P, LIU S D, WANG X, NIE Q X, YANG S M, XU W Y, ZHOU M H. Simultaneous detection of dopamine and uric acid based on chiral MOF and acetylene black modified electrode[J]. Chinese J. Inorg. Chem., 2020,36(1):139-147.
Liu J, Ma Q, Huang Z, Liu G, Zhang H. Recent progress in graphenebased noble-metal nanocomposites for electrocatalytic applications[J]. Adv. Mater., 2019,31(9)1800696. doi: 10.1002/adma.201800696
XU P, QIU H X, SONG L Z, YANG T L, LI X J. Preparation of graphene/metal nanocomposites and its research progress[J]. Nonferrous Metal Materials and Engineering, 2017,38(3):177-184.
XU K L, XU X W, LI L Y, XIA Y, XIE Y W. Research progress of carbon nanotubes (CNTs)/polymer nanocomposites[J]. Journal of Capital Normal University (Natural Sciences Edition), 2019,40(5):8488-88.
Dong Y H, Zheng J B, Xing J, Zhao T, Peng S. In situ synthesis of gold nanoparticle on MIL-101(Cr)-NH2 for non-enzymatic dopamine sensing[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2022,650129618. doi: 10.1016/j.colsurfa.2022.129618
Hira S A, Nagappan S, Annas D, Kumar Y A, Park K H. NO2-func-tionalized metal-organic framework incorporating bimetallic alloy nanoparticles as a sensor for efficient electrochemical detection of dopamine[J]. Electrochem. Commun., 2021,125107012. doi: 10.1016/j.elecom.2021.107012
Direksilp C, Scheiger J M, Ariyasajjamongkol N, Sirivat A. A highly selective and sensitive electrochemical sensor for dopamine based on a functionalized multi-walled carbon nanotube and poly (N-meth-ylaniline) composite[J]. Anal. Methods, 2022,14(4):469-479. doi: 10.1039/D1AY01943K
Hu C, Pan P, Huang H P, Liu H. Cr-MOF-based electrochemical sensor for the detection of p-nitrophenol[J]. Biosensors, 2022,12(10)813820.
Xue W, Wang Y, Guo L, Zhang H. Zr-MOF functionalized nanochannels: Application to regenerative and sensitive electrochemical aptasensing platform[J]. Sens. Actuator B-Chem., 2023,381133455. doi: 10.1016/j.snb.2023.133455
Fan W D, Liu X P, Wang X, Li Y, Xing C, Wang Y T, Guo W Y, Zhang L L, Sun D. A fluorine-functionalized microporous In-MOF with high physicochemical stability for light hydrocarbon storage and separation[J]. Inorg. Chem. Front., 2018,5(10):2445-2449. doi: 10.1039/C8QI00652K
Pan L, Liu G, Li H, Meng S, Han L, Shang J, Li R W. A resistance-switchable and ferroelectric metal-organic framework[J]. J. Am. Chem. Soc., 2014,136(50):17477-17483. doi: 10.1021/ja508592f
Wu F, Fang W, Yang X Y, Xu J J, Wang Z. Twodimensional π-conjugated metal-organic framework with high electrical conductivity for electrochemical sensing[J]. J. Chin. Chem. Soc., 2019,66(5):522-528. doi: 10.1002/jccs.201800198
Liu X, Cui G N, Dong L M, Wang X M, Zhen Q F, Sun Y, Ma S, Zhang C J, Pang H J. Synchronous electrochemical detection of dopamine and uric acid by a PMo12@MIL-100(Fe)@PVP nanocomposite[J]. Anal. Biochem., 2022,648114670. doi: 10.1016/j.ab.2022.114670
Dehdashtian S, Hashemi B, Chegeni M, Aeenmehr A. The application of perlite/cobalt oxide/reduced graphene oxide (PC-rGO)/metal-organic framework (MOF) composite as electrode modifier for direct sensing of anticancer drug idarubicin[J]. IEEE Sens. J., 2019,19(24):11739-11745. doi: 10.1109/JSEN.2019.2937400
Lu T, Chen F W. Multiwfn: A multifunctional wavefunction analyzer[J]. J. Comput. Chem., 2011,33(5):580-592.
Li Y, Wang F, Huang F, Li Y, Feng S. Direct electrochemistry of glucose oxidase and its biosensing to glucose based on the Chit-MWCNTs-AuNRs modified gold electrode[J]. J. Electroanal. Chem., 2012,685:86-90. doi: 10.1016/j.jelechem.2012.08.028
He Q G, Liu J, Liu X P, Li G, Chen D, Deng P, Liang J. A promising sensing platform to ward dopamine using MnO nanowires/electro-reduced graphene oxide composites[J]. Electrochim. Acta, 2019,296:683-692. doi: 10.1016/j.electacta.2018.11.096
Khoshraftar R, Shishehbore M R, Sheibani A. Synthesis and characterization of graphene oxideCu NPs-Fe-MOF nanocomposite and its application to simultaneous determination of Eskazina and dopamine in real samples[J]. J. Electroanal. Chem., 2022,926116945. doi: 10.1016/j.jelechem.2022.116945
Shen C H, Chang Y N, Chen Y L, Kung C W. Sulfonate-grafted metalorganic framework-A porous alternative to Nafion for electrochemical sensors[J]. ACS Mater. Lett., 2023,5(7):1938-1943. doi: 10.1021/acsmaterialslett.3c00389
Gayathri P, Sakshi , Ramanujam K. Redox active cobalt-bipyridine metal organic framework-Nafion coated carbon nanotubes for sensing ascorbic acid[J]. J. Electrochem. Soc., 2018,165(13):B603-B609. doi: 10.1149/2.0661813jes
Ma Y, Zhang Y L, Wang L S. An electrochemical sensor based on the modification of platinum nanoparticles and ZIF-8 membrane for the detection of ascorbic acid[J]. Talanta, 2021,226122105. doi: 10.1016/j.talanta.2021.122105
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Bin HE , Hao ZHANG , Lin XU , Yanghe LIU , Feifan LANG , Jiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161
Renxiu Zhang , Xin Zhao , Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116
Hongyao Li , Youyan Liu , Luwei Dai , Min Yang , Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
Wenjie SHI , Fan LU , Mengwei CHEN , Jin WANG , Yingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Symmetry codes: A: x, x-y, 1/3-z; B: 1-x, 1-y, z; C: 1-x, 1-y, -1/3-z; D: x, y, 1/3-z.
cDA=56 µmol·L-1; pH=5, PBS.