Citation: Hongdao LI, Shengjian ZHANG, Hongmei DONG. Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411 shu

Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions

  • Corresponding author: Hongdao LI, lihong.dao@163.com
  • Received Date: 30 October 2023
    Revised Date: 24 January 2024

Figures(8)

  • Employing the reaction of chiral nitronyl nitroxide radical and rare-earth ions, two 2p-4f hetero-spin meso complexes [Ln(hfac)3((R)-MePP-Ph-NIT)]2, where Ln=Eu (1) and Dy (2), hfac=hexafluoroacetylacetone; (R)-MePP-Ph-NIT=2-(4-((R)-tert-butyl-2-methylpiperazine-1-carboxylate)phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, have been assembled. In both complexes, two chiral radicals ligate to two Ln(Ⅲ) ions to produce a cyclic dinuclear structure. Complex 1 shows the characteristic fluorescence emission of the Eu(Ⅲ) ion. In complex 2, the frequency-dependent out-of-phase susceptibility signals connected with magnetic relaxation confirm single-molecule magnet (SMM) behavior.
  • 加载中
    1. [1]

      Sessoli R, Gatteschi D, Caneschi A, Novak M A. Magnetic bistability in a metal-ion cluster[J]. Nature, 1993,365:141-143. doi: 10.1038/365141a0

    2. [2]

      Sorace L, Benelli C, Gatteschi D. Lanthanides in molecular magnetism: Old tools in a new field[J]. Chem. Soc. Rev., 2011,40:3092-3104. doi: 10.1039/c0cs00185f

    3. [3]

      Ashebr T G, Li H, Ying X, Li X L, Zhao C, Liu S T, Tang J K. Emerging trends on designing high-performance dysprosium(Ⅲ) single-molecule magnets[J]. ACS Mater. Lett., 2022,4:307-319. doi: 10.1021/acsmaterialslett.1c00765

    4. [4]

      Rinehart J D, Long J R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets[J]. Chem. Sci., 2011,2:2078-2085. doi: 10.1039/c1sc00513h

    5. [5]

      Guo F S, Day B M, Chen Y C, Tong M L, Mansikkamäki A, Layfield R A. Magnetic hysteresis up to 80 Kelvin in a dysprosium metallocene single-molecule magnet[J]. Science, 2018,362:1400-1403. doi: 10.1126/science.aav0652

    6. [6]

      Gould C A, McClain K R, Reta D, Kragskow J G C, Marchiori D A, Lachman E, Choi E S, Analytis J G, Britt R D, Chilton N F, Harvey B G, Long J R. Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding[J]. Science, 2022,375:198-202. doi: 10.1126/science.abl5470

    7. [7]

      Demir S, Jeon I R, Long J R, Harris T D. Radical ligand-containing single-molecule magnets[J]. Coord. Chem. Rev., 2015,289:149-176.

    8. [8]

      Sessoli R, Powell A K. Strategies towards single molecule magnets based on lanthanide ions[J]. Coord. Chem. Rev., 2009,253:2328-2341. doi: 10.1016/j.ccr.2008.12.014

    9. [9]

      Li H D, Wu S G, Tong M L. Lanthanide-radical single-molecule magnets: Current status and future challenges[J]. Chem. Commun., 2023,59:6159-6170. doi: 10.1039/D2CC07042A

    10. [10]

      Demir S, Gonzalez M I, Darago L E, Evans W J, Long J R. Giant coercivity and high magnetic blocking temperatures for N23- radical-bridged dilanthanide complexes upon ligand dissociation[J]. Nat. Commun., 2017,82144. doi: 10.1038/s41467-017-01553-w

    11. [11]

      Li H D, Jing P, Lu J, Xie J, Zhai L J, Xi L. Dipyridyl-decorated nitronyl nitroxide-Dy single-molecule magnet with a record energy barrier of 146 K[J]. Inorg. Chem., 2021,60:7622-7626. doi: 10.1021/acs.inorgchem.1c00809

    12. [12]

      Jia J H, Li Q W, Chen Y C, Liu J L, Tong M L. Luminescent single-molecule magnets based on lanthanides: Design strategies, recent advances and magneto-luminescent studies[J]. Coord. Chem. Rev., 2019,378:365-381. doi: 10.1016/j.ccr.2017.11.012

    13. [13]

      Ziessel R, Ulrich G, Lawson R C, Echegoyen L. Oligopyridine bis (nitronyl nitroxides): Synthesis, structures, electrochemical, magnetic and electronic properties[J]. J. Mater. Chem., 1999,9:1435-1448. doi: 10.1039/a810044f

    14. [14]

      Kahn O. Molecular magnetism. Weinheim: VCH, 1993.

    15. [15]

      SAINT Version 7.68A. Bruker AXS, Inc., Madison, WI, 2009.

    16. [16]

      Sheldrick G M. SADABS, Version 2008/1. Bruker AXS, Inc., Madison, WI, 2008.

    17. [17]

      Sheldrick G M. SHELXS-2014, Program for structure solution. University of Göttingen, Germany, 2014.

    18. [18]

      Sheldrick G M. SHELXL-2014, Program for structure refinement. University of Göttingen, Germany, 2014.

    19. [19]

      Kahn M L, Sutter J P, Guionneau S G P, Ouahab L, Kahn O, Chasseau D. Systematic investigation of the nature of the coupling between an Ln(Ⅲ) Ion (Ln=Ce(Ⅲ) to Dy(Ⅲ)) and its aminoxyl radical ligands: Structural and magnetic characteristics of a series of {Ln(organic radical)2} compounds and the related {Ln(Nitrone)2} derivatives[J]. J. Am. Chem. Soc., 2000,122:3413-3421. doi: 10.1021/ja994175o

    20. [20]

      Wang Y J, Wu D F, Gou J, Duan Y Y, Li L, Chen H H, Gao H L, Cui J Z. Modulation of the properties of dinuclear lanthanide complexes through utilizing different β-diketonate co-ligands: Near-infrared luminescence and magnetization dynamics[J]. Dalton Trans., 2020,49:2850-2861. doi: 10.1039/C9DT04093E

    21. [21]

      Xi L, Li H D, Sun J, Ma Y, Tang J K, Li L C. Designing multicoordinating nitronyl nitroxide radical toward multinuclear lanthanide aggregates[J]. Inorg. Chem., 2020,59:443-451. doi: 10.1021/acs.inorgchem.9b02739

    22. [22]

      Casanova D, Llunell M, Alemany P, Alvarez S. The rich stereochemistry of eight vertex polyhedra: A continuous shape measures study[J]. Chem.-Eur. J., 2005,11:1479-1494. doi: 10.1002/chem.200400799

    23. [23]

      Llunell M, Casanova D, Cirera J, Alemany P, Alvarez S. SHAPE 2.1. University of Barcelona, Spain, 2013.

    24. [24]

      Liu Y, Anh Ho L T, Huang G Z, Chen Y C, Ungur L, Liu J L, Tong M L. Magnetization dynamics on isotope-isomorphic holmium single-molecule magnets[J]. Angew. Chem. Int. Ed., 2021,60:27282-27287. doi: 10.1002/anie.202112764

    25. [25]

      Yang Q Q, Ungur L, Chibotarud L F, Tang J K. Toroidal versus centripetal arrangement of the magnetic moment in a Dy4 tetrahedron[J]. Chem. Commun., 2022,58:1784-1787. doi: 10.1039/D1CC06265D

    26. [26]

      Dolinar B S, Coca S G, Alexandropoulos D I, Dunbar K R. An air stable radical-bridged dysprosium single molecule magnet and its neutral counterpart: Redox switching of magnetic relaxation dynamics[J]. Chem. Commun., 2017,53:2283-2286. doi: 10.1039/C6CC09824J

    27. [27]

      Wang J, Miao H, Xiao Z X, Zhou Y, Deng L D, Zhang Y Q, Wang X Y. Syntheses, structures and magnetic properties of the lanthanide complexes of the pyrimidyl-substituted nitronyl nitroxide radical[J]. Dalton Trans., 2017,46:10452-10461. doi: 10.1039/C7DT01037K

    28. [28]

      Liu C M, Sun R, Hao X, Wang B W. Chiral co-crystals of (S)- or (R)-1,1'-binaphthalene-2,2'-diol and Zn2Dy2 tetranuclear complexes behaving as single-molecule magnets[J]. Cryst. Growth Des., 2021,21:4346-4353. doi: 10.1021/acs.cgd.1c00246

    29. [29]

      Shi J Y, Wu M Z, Chen P Y, Li T, Tian L, Zhang Y Q. Terbium triangle bridged by a triazole nitronyl nitroxide radical with single-molecule-magnet behavior[J]. Inorg. Chem., 2019,58:14285-14288. doi: 10.1021/acs.inorgchem.9b01647

    30. [30]

      JI W J, XIA C C, ZHANG X Y, WANG X Y. Anionic modification of the Cu-Tb single-molecule magnets based on the compartmental Schiff-base ligand[J]. Chinese J. Inorg. Chem., 2022,38:1199-1208.  

    31. [31]

      Chilton N F, Collison D, McInnes E J L, Winpenny R E P, Soncini A. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes[J]. Nat. Commun., 2013,42551. doi: 10.1038/ncomms3551

    32. [32]

      Miao H, Li H Q, Shen F X, Wei H Y, Wang B L, Wang X Y. A family of lanthanide complexes with a bis-tridentate nitronyl nitroxide radical: Syntheses, structures and magnetic properties[J]. Dalton Trans., 2019,48:10337-10345. doi: 10.1039/C9DT01397K

    33. [33]

      Xiao Z X, Miao H, Shao D, Wei H Y, Zhang Y Q, Wang X Y. Single-molecule magnet behaviour in a dysprosium-triradical complex[J]. Chem. Commun., 2018,54:9726-9729. doi: 10.1039/C8CC04739A

    34. [34]

      Liu J L, Chen Y C, Zheng Y Z, Lin W Q, Ungur L, Wernsdorfer W, Chibotaru L F, Tong M L. Switching the anisotropy barrier of a single-ion magnet by symmetry change from quasi-D5h to quasi-Oh[J]. Chem. Sci., 2013,4:3310-3316. doi: 10.1039/c3sc50843a

  • 加载中
    1. [1]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    2. [2]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    3. [3]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    4. [4]

      Matvey K. Shurikov Yuliana A. Kolesnikova Darya E. Votkina Pavel A. Abramov Taisiya S. Sukhikh Galina V. Romanenko Sergey L. Veber Dmitry E. Gorbunov Nina P. Gritsan Giuseppe Resnati Evgeny V. Tretyakov Vadim Yu. Kukushkin Pavel S. Postnikov Pavel V. Petunin . Engineering optical anisotropy in paramagnetic organic crystals: Dichroism of nitronyl nitroxide radicals. Chinese Journal of Structural Chemistry, 2025, 44(9): 100653-100653. doi: 10.1016/j.cjsc.2025.100653

    5. [5]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    6. [6]

      Jinjiang WuZhenhua ZhuJinkui Tang . Recent advancements of photo-responsive lanthanide single-molecule magnets. Chinese Chemical Letters, 2025, 36(12): 110577-. doi: 10.1016/j.cclet.2024.110577

    7. [7]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    8. [8]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    9. [9]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    10. [10]

      Xinyi LuoKe WangYingying XueXiaobao CaoJianhua ZhouJiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924

    11. [11]

      Hao GuRui LiQiuying LiSheng LuYahui ChenXiaoning YangHuili MaZhijun XuXiaoqiang Chen . Multi-dimensional hydrogen bonds regulated emissions of single-molecule system enabling surficial hydrophobicity/hydrophilicity mapping. Chinese Chemical Letters, 2025, 36(5): 110116-. doi: 10.1016/j.cclet.2024.110116

    12. [12]

      Qian-Cheng LuoXia-Li DingWen-Jie XuYuan-Qi ZhaiYan-Zhen Zheng . Equatorial aminopyridine ligands stabilize an unusual straightly bridging mode in dimeric dysprosium(Ⅲ) single-molecule magnets. Chinese Chemical Letters, 2025, 36(9): 110304-. doi: 10.1016/j.cclet.2024.110304

    13. [13]

      Yicheng LiQian LiuTianhao LiHao BiZhurui Shen . Recent achievements in rare earth modified metal oxides for environmental and energy applications: A review. Chinese Chemical Letters, 2025, 36(9): 110698-. doi: 10.1016/j.cclet.2024.110698

    14. [14]

      Ying ZhaoYin-Hang ChaiMeng-Meng ZhaiQin-Ying JinXiaoyan LuYi-Dan QiaoLu-Fang Ma . New functional metal–organic framework (MOF) based optical thermometer by the post-synthesis doping rare earth ions into MOF. Chinese Chemical Letters, 2026, 37(1): 111085-. doi: 10.1016/j.cclet.2025.111085

    15. [15]

      Zheng LiFangkun LiXijun XuJun ZengHangyu ZhangLei XiYiwen WuLinwei ZhaoJiahe ChenJun LiuYanping HuoShaomin Ji . A scalable approach to Na4Fe3(PO4)2P2O7@carbon/expanded graphite as cathode for ultralong-lifespan and low-temperature sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110390-. doi: 10.1016/j.cclet.2024.110390

    16. [16]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    17. [17]

      Peipei CUIYawen ZHENGPan LIPeiyan GUANZhaohong QIAN . Praseodymium-organic framework with 4, 4′-oxybis(benzoic acid): Rare broken layer structure, antibacterial activity, and sensing for Cd2+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1641-1649. doi: 10.11862/CJIC.20250152

    18. [18]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    19. [19]

      Wentao SunLin XiangRunming WangMeilan HuangBo LvYoucai HuChun Li . Microenvironment accessibility enables rare oxidation type of triterpenoids by plant P450. Chinese Chemical Letters, 2026, 37(2): 110965-. doi: 10.1016/j.cclet.2025.110965

    20. [20]

      Xuan WangPeng SunSiteng YuanLu YueYufeng Zhao . P2-type low-cost and moisture-stable cathode for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 110015-. doi: 10.1016/j.cclet.2024.110015

Metrics
  • PDF Downloads(2)
  • Abstract views(985)
  • HTML views(187)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return