Citation: Chuanbing HOU, Yingyu LI, Jingyi CHI, Yan DING, Zhiqiang WANG, Hongliang HAN, Xingru LI, Qionghua JIN. Synthesis, physicochemical properties and terahertz time domain spectroscopy of two lanthanide (Eu, Tb) bisphosphonate complexes containing keggin polyoxometalates[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 135-144. doi: 10.11862/CJIC.20230394 shu

Synthesis, physicochemical properties and terahertz time domain spectroscopy of two lanthanide (Eu, Tb) bisphosphonate complexes containing keggin polyoxometalates

Figures(9)

  • Two novel lanthanide bisphosphonate complexes containing Keggin polyoxometalates [Eu(L)4]PW12O40· 2CH3CN (1) and [Tb(L)3(H2O)]PW12O40 (2) (L=tetraethyl ethylenediphosphonate) were synthesized in a mixed solvent of acetonitrile and deionized water. The properties of the two complexes were characterized by single-crystal X-ray diffraction, elemental analysis, infrared spectroscopy, powder X-ray diffraction, thermogravimetric analysis and terahertz time domain spectroscopy. The crystal structure and intermolecular weak force of the complexes were analyzed, and the luminescence and other properties of the complexes were studied. The single crystal X-ray diffraction indicates that the structure of complex 1 is a twisted tetragonal antiprism with Eu (Ⅲ) as the center and L as the ligands chelate. The structure of complex 2 is a twisted single-capped octahedral with Tb(Ⅲ) as the center and L and H2O as the ligands. The luminescence spectra indicate that all emission peaks of complexes 1 and 2 are due to charge transfer within the metal. In addition, terahertz time-domain spectroscopy has helped in the study of complexes 1 and 2.
  • 加载中
    1. [1]

      Hu Z Y, Haneklaus S, Sparovek G, Schnug E. Rare earth elements in soils[J]. Commun. Soil Sci. Plant Anal., 2006,37(9/10):1381-1420.

    2. [2]

      Ramos S J, Dinali G S, Oliveira C, Martins G C, Moreira C G, Siqueira J O, Guilherme L R G. Rare earth elements in the soil environment[J]. Curr. Pollut. Rep., 2016,2(1):28-50. doi: 10.1007/s40726-016-0026-4

    3. [3]

      Katkova M A, Bochkarev M N. New trends in design of electroluminescent rare earth metallo-complexes for OLEDs[J]. Dalton Trans., 2010,39(29):6599-6612. doi: 10.1039/c001152e

    4. [4]

      Visseaux M, Bonnet F. Borohydride complexes of rare earths, and their applications in various organic transformations[J]. Coord. Chem. Rev., 2011,255(3/4):374-420.

    5. [5]

      Yang Z Y, Yang R D, Li F S, Yu K B. Crystal structure and antitumor activity of some rare earth metal complexes with Schiff base[J]. Polyhedron, 2000,19(26/27):2599-2604.

    6. [6]

      HUANG C H. Coordination chemistry of rare earth. Beijing: Science Press, 1997: 79-156

    7. [7]

      LIU W S. Coordination chemistry. 2nd ed. Beijing: Chemical Industry Press, 2018: 24-28

    8. [8]

      Li K, Chen J, Zou D, Deng Y F, Li D Q. Recovery of cerium(Ⅳ) in acidic nitrate solutions by solvent extraction with a novel extractant tris(2-ethylhexyl)phosphine oxide[J]. Hydrometallurgy, 2019,190105155. doi: 10.1016/j.hydromet.2019.105155

    9. [9]

      Turanov A N, Matveeva A G, Kudryavtsev I Y, Pasechnik M P, Matveev S V, Godovikova M I, Baulina T V, Karandashev V K, Brel V K. Tripodal organophosphorus ligands as synergistic agents in the solvent extraction of lanthanides(Ⅲ). Structure of mixed complexes and effect of diluents[J]. Polyhedron, 2019,161:276-288. doi: 10.1016/j.poly.2019.01.036

    10. [10]

      Lin C G, Hutin M, Busche C, Bell N L, Long D L, Cronin L. Elucidating the paramagnetic interactions of an inorganic-organic hybrid radical-functionalized Mn-Anderson cluster[J]. Dalton Trans., 2021,50(7):2350-2353. doi: 10.1039/D0DT04149A

    11. [11]

      Sha J Q, Liang L Y, Sun J W, Tian A X, Yan P F, Li G M, Wang C. Significant surface modification of polyoxometalate by smart silver-tetrazolate units[J]. Cryst. Growth Des., 2012,12(2):894-901. doi: 10.1021/cg2013396

    12. [12]

      Wang S S, Yang W B, Yang M X, Wu X Y, Wu W M, Wang S X, Lin L, Lu C Z. A bi-polyoxometallate-based host-guest metal-organic framework[J]. Chem. Comm., 2020,56(16):2503-2506. doi: 10.1039/C9CC09008H

    13. [13]

      Zhu P P, Sun L J, Sheng N, Sha J Q, Liu G D, Yu L, Qiu H B, Li S X. Tuning the helical structures of Wells-Dawson polyoxometalate based hybrid compounds by using isomeric ligands[J]. Cryst. Growth Des., 2016,16(6):3215-3223. doi: 10.1021/acs.cgd.6b00119

    14. [14]

      Luo X M, Li N F, Hu Z B, Cao J P, Cui C H, Lin Q F, Xu Y. Polyoxometalate-based well-defined rodlike structural multifunctional materials: synthesis, structure, and properties[J]. Inorg. Chem., 2019,58(4):2463-2470. doi: 10.1021/acs.inorgchem.8b03021

    15. [15]

      Ma Y, Li Y G, Wang E B, Lu Y, Wang X L, Xu X X. Self-assembly of four new extended architectures based on reduced polyoxometalate clusters and cadmium complexes[J]. J. Solid State Chem., 2006,179(8):2367-2375. doi: 10.1016/j.jssc.2006.04.031

    16. [16]

      Tian A, Han Z G, Peng J, Dong B X, Sha J Q, Li B. Two novel hybrid inorganic-organic compounds based on Wells-Dawson polyanion and transition metal (TM) complex with one-dimensional structure: Hydrothermal synthesis and characterization[J]. J. Mol. Struct., 2007,832(1/2/3):117-123.

    17. [17]

      Tong R Z, Ren X Y, Li Z X, Liu B, Hu H M, Xue G L, Fu F, Wang J W. A novel extended architecture with 46·64 topology based on mixed-valence Wells-Dawson arsenotungstate and mixed-ligand Cu(Ⅰ) units[J]. J. Solid State Chem., 2010,183(9):2027-2031. doi: 10.1016/j.jssc.2010.07.004

    18. [18]

      Wu H, Yang J, Liu Y Y, Ma J F. pH-controlled assembly of two unusual entangled motifs based on a tridentate ligand and octamolybdate clusters: 1D + 1D → 3D poly-pseudorotaxane and 2D → 2D → 3D polycatenation[J]. Cryst. Growth Des., 2012,12(5):2272-2276. doi: 10.1021/cg201555f

    19. [19]

      Wang X L, Guo Y Q, Li Y G, Wang E B, Hu C W, Hu N H. Novel polyoxometalate-templated, 3-D supramolecular networks based on lanthanide dimers: synthesis, structure, and fluorescent properties of[Ln2(DNBA)4(DMF)8][Mo6O19] (DNBA=3, 5-dinitrobenzoate)[J]. Inorg. Chem., 2003,42(13):4135-4140. doi: 10.1021/ic0342447

    20. [20]

      Zhang Z Y. Self-assembly of isopolyanion clusters and lanthanide- organic units into 2D layers: (NH4)2{[Ln2(C7H4NO4)2(H2O)9][(H2W12O40)]}·nH2O (Ln=Gd, Tb, Ho)[J]. J. Clust. Sci., 2011,22(4):705-701. doi: 10.1007/s10876-011-0416-0

    21. [21]

      Jin G Y, Zhang L, Hu F Z, Hu C, Lu Y L, Li Y Y, Han H L, Liu J M, Yang Y P, Jin Q H, Li X R. Photocatalysis, terahertz time domain spectroscopy and weak interactions of six polyoxometalate-based lanthanide phosphine oxide complexes[J]. CrystEngComm, 2022,24(29):5307-5316. doi: 10.1039/D2CE00779G

    22. [22]

      Wang Z Q, Pan X, Lu Y L, Li Y Y, Yang Y P, Xin X L, Jin Q H. Crystal structures, terahertz spectra and dye adsorption performance of three lanthanide-bisphosphonate complexes containing Keggin polyoxometalates[J]. Chin. J. Struct. Chem., 2021,40(5):615-624.

    23. [23]

      Wang Z Q, Sun L Z, Kuang X N, Lu Y L, Li Y Y, Yang Y P, Liu J M, Niu Y Y, Jin Q H. Intermolecular interactions, photocatalysis and THz-TDS interrelationships for lanthanide phosphine oxide complexes based on {PW12}[J]. Environ. Res., 2022,203111873. doi: 10.1016/j.envres.2021.111873

    24. [24]

      Hu C, Lu Y L, Li Y Z, Yang Y P, Liu M, Liu J M, Li Y Y, Jin Q H, Niu Y Y. Facile high yield, excellent catalytic performance of polyoxometalate-based lanthanide phosphine oxide complexes: Syntheses, structures, photocatalysis and THz spectra[J]. Environ. Res., 2022,206112267. doi: 10.1016/j.envres.2021.112267

    25. [25]

      Hu C, Li Y Y, Qiu Q M, Han H L, Gu C Y, Yang Y P, Dai L X, Jin Q H. Efficient dye degradation and THz spectra of {PMo12} based rare earth phosphine oxide complexes[J]. CrystEngComm, 2022,24(40):7166-7175. doi: 10.1039/D2CE00989G

    26. [26]

      Xu S, Liu M, Yang Y P, Jiang Y H, Li Z F, Jin Q H, Wang X, Xue X N. Syntheses, structures, luminescence, NMR spectra and terahertz time-domain spectroscopy of nine lanthanide triflate complexes of tetrakis(O-isopropyl)methylenedisphosphonate with a L∶Ln ratio of 4∶1[J]. Polyhedron, 2015,87:293-301. doi: 10.1016/j.poly.2014.11.022

    27. [27]

      Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications[J]. Laser Photonics Rev., 2011,5(1):124-166. doi: 10.1002/lpor.201000011

    28. [28]

      Krishnakumar V, Nagalakshmi R. Terahertz generation in 3-nitroaniline single crystals[J]. Cryst. Growth Des., 2008,8(11):3882-3884. doi: 10.1021/cg070548i

    29. [29]

      Yang L M, Zhao G Z, Li W H, Liu Y F, Shi X X, Jia X F, Zhao K, Lu X Y, Xu Y Z, Xie D T, Wu J G, Chen J E. Low-frequency vibrational modes of DL-homocysteic acid and related compounds[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009,73A(5):884-891.

    30. [30]

      Sheldrick G M. Software for crystal structure analysis. Siemens Analytical X-ray Instruments Inc. Wisconsin: Madison, USA, 1997.

    31. [31]

      Sheldrick G M. SHELXTL NT Version 5.1, program for solution and refinement of crystal structures. University of Gö;ttingen: Germany, 1997.

    32. [32]

      Ma Y, Yang Y S, Jiang Y H, Li Y X, Liu M, Li Z F, Han H L, Yang Y P, Xin X L, Jin Q H. Lanthanide contraction and chelating effect on a new family of lanthanide complexes with tetrakis(O-isopropyl) methylenediphosphonate: synthesis, structures and terahertz time-domain spectroscopy[J]. RSC Adv., 2017,7(66):41651-41666. doi: 10.1039/C7RA07888A

    33. [33]

      Haupt E T K, Kopf J, Petrova J, Arabadzhiev V, Momchilova S. Complexes of esters of ethylenediphosphonic acid with lanthanide nitrates-synthesis and structure[J]. Heteroat. Chem., 2006,17(1):36-46. doi: 10.1002/hc.20188

    34. [34]

      Khder A E R S. Preparation, characterization and catalytic activity of tin oxide-supported 12-tungstophosphoric acid as a solid catalyst[J]. Appl. Catal. A-Gen., 2008,343(1/2):109-116.

    35. [35]

      Matveeva A G, Vologzhanina A V, Goryunov E I, Aysin R R, Pasechnik M P, Matveev S V, Godovikov I A, Safiulina A M, Brel V K. Extraction and coordination studies of a carbonyl-phosphine oxide scorpionate ligand with uranyl and lanthanide(Ⅲ) nitrates: Structural, spectroscopic and DFT characterization of the complexes[J]. Dalton Trans., 2016,45(12):5162-5179. doi: 10.1039/C5DT04963F

    36. [36]

      Wei C, Sun B X, Zhao Z F, Cai Z L, Liu J J, Tan Y, Wei H B, Liu Z W, Bian Z Q, Huang C H. A family of highly emissive lanthanide complexes constructed with 6-(diphenylphosphoryl)picolinate[J]. Inorg. Chem., 2020,59(13):8800-8808. doi: 10.1021/acs.inorgchem.0c00444

    37. [37]

      Lu Y L, Ma Y, Sun L Z, Kuang X N, Xin X L, Han H L, Liu M, Li Z F, Jin Q H. 1D lanthanide coordination polymers containing biphosphonate ligand: Synthesis, structures and luminescence properties[J]. Inorg. Chem. Commun., 2020,118108045. doi: 10.1016/j.inoche.2020.108045

    38. [38]

      Wang C Y, Kang J, Zhang X Q, Zhao Y L, Chu H B. Crystal structures and luminescence properties of lanthanide complexes with 4-bromobenzoate and nitrogen heterocyclic ligands[J]. J. Lumin., 2019,215116638. doi: 10.1016/j.jlumin.2019.116638

  • 加载中
    1. [1]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    4. [4]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    8. [8]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    11. [11]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    12. [12]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    13. [13]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    14. [14]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    15. [15]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(1)
  • Abstract views(556)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return