Citation: Feilong GONG, Jingxuan LIU, Mengmeng LIU, Sankui XU, Feng LI. Dynamical modulation and electrochemical water splitting effect of oxygen doped onto MoS2 core-shell spheres[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 256-262. doi: 10.11862/CJIC.20230390 shu

Dynamical modulation and electrochemical water splitting effect of oxygen doped onto MoS2 core-shell spheres

  • Corresponding author: Feng LI, lifeng696@yahoo.com
  • Received Date: 18 October 2023
    Revised Date: 20 December 2023

Figures(4)

  • Monodispersed MoS2 core-shell spheres were produced by annealing precursor MoS2 core-shell superspheres at 900 ℃ in Ar. Simultaneously, O-doping amount (atomic fraction) can be tuned from 23.1% of precursor to 17.6%, 10.8%, 5.5%, and 6.2% of as-prepared materials by regulating the heating rate of 20, 10, 5, and 2 ℃·min-1, respectively. The lower rate results in a lower amount of O doped onto MoS2 core-shell spheres. Based on the special quasi-molecular superlattices of precursors, an in-situ anion exchange reaction mechanism was proposed to understand the dynamical modulation of O-doping. The study on the electrochemical properties of the materials demonstrates that their electrochemical performance in splitting water can be improved by tuning the O-doping amount.
  • 加载中
    1. [1]

      Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem. Soc. Rev., 2015,44(15):5148-5180. doi: 10.1039/C4CS00448E

    2. [2]

      Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007,317(5834):100-102. doi: 10.1126/science.1141483

    3. [3]

      Chen J, Liu G, Zhu Y Z, Su M, Yin P F, Wu X J, Lu Q P, Tan C L, Zhao M T, Liu Z Q, Yang W M, Li H, Nam G H, Zhang L P, Chen Z H, Huang X, Radjenovic P M, Huang W, Tian Z Q, Li J F, Zhang H. Ag@MoS2 core-shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2[J]. J. Am. Chem. Soc., 2020,142(15):7161-7167. doi: 10.1021/jacs.0c01649

    4. [4]

      Han J H, Kim H K, Baek B, Han J, Ahn H S, Baik M H, Cheon J. Activation of the basal plane in two-dimensional transition metal chalcogenide nanostructures[J]. J. Am. Chem. Soc., 2018,140(42):13663-13671. doi: 10.1021/jacs.8b05477

    5. [5]

      Xiao W, Liu P T, Zhang J Y, Song W D, Feng Y P, Gao D Q, Ding J. Dual‑functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution[J]. Adv. Energy Mater., 2017,7(7)1602086.

    6. [6]

      Kim M, Anjum M A R, Lee M, Lee B J, Lee J S. Activating MoS2 basal plane with Ni2P nanoparticles for Pt-like hydrogen evolution reaction in acidic media[J]. Adv. Funct. Mater., 2019,29(10)1809151. doi: 10.1002/adfm.201809151

    7. [7]

      Li G, Zhang D, Yu Y F, Huang S Y, Yang W T, Cao L Y. Activating MoS2 for pH-universal hydrogen evolution catalysis[J]. J. Am. Chem. Soc., 2017,139(45):16194-16200. doi: 10.1021/jacs.7b07450

    8. [8]

      Zhang Y C, Yang T R, Li J, Zhang Q, Li B Z, Gao M. Construction of Ru, O co-doping MoS2 for hydrogen evolution reaction electrocatalyst and surface-enhanced Raman scattering substrate: High-performance, recyclable, and durability improvement[J]. Adv. Funct. Mater., 2022,33(3)2210939.

    9. [9]

      Pető J, Ollár T, Vancsó P, Popov Z I, Magda G Z, Dobrik G, Hwang C, Sorokin P B, Tapasztó L. Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions[J]. Nat. Chem., 2018,10:1246-1251. doi: 10.1038/s41557-018-0136-2

    10. [10]

      Deng J, Li H B, Xiao J P, Tu Y C, Deng D H, Yang H X, Tian H F, Li J Q, Ren P J, Bao X H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping[J]. Energy Environ. Sci., 2015,8(5):1594-1601. doi: 10.1039/C5EE00751H

    11. [11]

      Wu W Z, Niu C Y, Wei C, Jia Y, Li C, Xu Q. Activation of MoS2 basal planes for hydrogen evolution by zinc[J]. Angew. Chem. Int. Ed., 2019,131(7):2051-2055. doi: 10.1002/ange.201812475

    12. [12]

      Yang W W, Zhang S Q, Chen Q, Zhang C, Wei Y, Jiang H, Lin Y X, Zhao M T, He Q Q, Wang X G, Du Yi, Song L, Yang S B, Nie A M, Zou X L, Gong Y J. Conversion of intercalated MoO3 to multi-heteroatoms-doped MoS2 with high hydrogen evolution activity[J]. Adv. Mater., 2020,32(30)e2001167. doi: 10.1002/adma.202001167

    13. [13]

      Cao D F, Ye K, Moses O A, Xu W J, Liu D B, Song P, Wu C Q, Wang C D, Ding S Q, Chen S M, Ge B H, Jiang J, Song L. Engineering the in-plane structure of metallic phase molybdenum disulfide via Co and O dopants toward efficient alkaline hydrogen evolution[J]. ACS Nano, 2019,13(10):11733-11740. doi: 10.1021/acsnano.9b05714

    14. [14]

      Shi Y, Zhou Y, Yang D R, Xu W X, Wang C, Wang F B, Xu J J, Xia X H, Chen H Y. Energy level engineering of MoS2 by transition- metal doping for accelerating hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2017,139(43):15479-15485. doi: 10.1021/jacs.7b08881

    15. [15]

      Chen Z X, Leng K, Zhao X X, Malkhandi S, Tang W, Tian B B, Dong L, Zheng L R, Lin M, Yeo B S, Loh K P. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide[J]. Nat. Commun., 2017,814548. doi: 10.1038/ncomms14548

    16. [16]

      Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. Controllable disorder engineering in oxygen- incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. J. Am. Chem. Soc., 2013,135(47):17881-17888. doi: 10.1021/ja408329q

    17. [17]

      Yu L, Xia B Y, Wang X, Lou X W. General formation of M-MoS3 (M=Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution[J]. Adv. Mater., 2016,28(1):92-97. doi: 10.1002/adma.201504024

    18. [18]

      Zhang L, Wu H B, Yan Y, Wang X, Lou X W. Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting[J]. Energy Environ. Sci., 2014,7(10):3302-3306. doi: 10.1039/C4EE01932F

    19. [19]

      Park S, Park J, Abroshan H, Zhang L, Kim J K, Zhang J, Guo J, Siahrostami S, Zheng X. Enhancing catalytic activity of MoS2 basal plane S-vacancy by Co cluster addition[J]. ACS Energy Lett., 2018,3(11):2685-2693. doi: 10.1021/acsenergylett.8b01567

    20. [20]

      Li H, Tsai C, Koh A L, Cai L, Contryman A W, Fragapane A H, Zhao J, Han H S, Manoharan H C, Abild-Pedersen F. Correction: Corrigendum: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies[J]. Nat. Mater., 2016,15(3):364-364.  

    21. [21]

      Pető J, Ollár T, Vancsó P, Popov Z I, Magda G Z, Dobrik G, Hwang C, Sorokin P B, Tapasztó L. Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions[J]. Nat. Chem., 2018,10(12):1246-1251. doi: 10.1038/s41557-018-0136-2

    22. [22]

      Li L, Qin Z, Ries L, Hong S, Michel T, Yang J, Salameh C, Bechelany M, Miele P, Kaplan D. Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen[J]. ACS Nano, 2019,13(6):6824-6834. doi: 10.1021/acsnano.9b01583

    23. [23]

      Gong F L, Peng L F, Liu H Z, Zhang Y H, Jia D Z, Fang S M, Li F, Li D M. 3D core-shell MoS2 superspheres composed of oriented nanosheets with quasi molecular superlattices: Mimicked embryo formation and Li-storage properties[J]. J. Mater. Chem. A, 2018,6(38):18498-18507. doi: 10.1039/C8TA07165A

    24. [24]

      Li F, Gong F L, Xiao Y H, Zhang A Q, Zhao J H, Fang S M, Jia D Z. ZnO twin-spheres exposed in +/-(001) facets: Stepwise self-assembly growth and anisotropic blue emission[J]. ACS Nano, 2013,7(12):10482-10491. doi: 10.1021/nn404591z

    25. [25]

      Li F, Ding Y, Gao P X, Xin X Q, Wang Z L. Single-cystal hexagonal disks and rings of ZnO: Low temperature, large-scale synthesis and growth mechanism[J]. Angew. Chem. Int. Ed., 2004,43(39):5238-5242. doi: 10.1002/anie.200460783

    26. [26]

      Liu Y H, Gong L H, Zhang Y H, Wang P Y, Wang G Q, Bai F H, Zhao Z T, Gong F L, Liu J. Metal sulfides yolk-shell nanoreactors with dual component for enhanced acidic electrochemical hydrogen production[J]. Small Struct., 2022,4(3)2200247.

    27. [27]

      Yang Y, Luo M C, Xing Y, Wang S T, Zhang W Y, Lv F, Li Y J, Zhang Y L, Wang W, Guo S J. A Universal strategy for intimately coupled carbon nanosheets/MoM nanocrystals (M=P, S, C, and O) hierarchical hollow nanospheres for hydrogen evolution catalysis and sodium-ion storage[J]. Adv. Mater., 2018,30(18)e1706085. doi: 10.1002/adma.201706085

  • 加载中
    1. [1]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    2. [2]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    3. [3]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    4. [4]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    5. [5]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    8. [8]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    9. [9]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    10. [10]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    11. [11]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    12. [12]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    13. [13]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    14. [14]

      Zuyou SongYong JiangQiao GouYini MaoYimin JiangWei ShenMing LiRongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793

    15. [15]

      Lina WangHairu WangQian BuQiong MeiJunbo ZhongBo BaiQizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139

    16. [16]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    17. [17]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    20. [20]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

Metrics
  • PDF Downloads(2)
  • Abstract views(603)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return