Advances in positron emission tomography imaging tracers for the central dopamine system
- Corresponding author: Wenjiang YANG, yangwj@ihep.ac.cn Yu LIU, yuliu@ihep.ac.cn
Citation:
Ge ZHANG, Wenjiang YANG, Yu LIU. Advances in positron emission tomography imaging tracers for the central dopamine system[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(1): 54-70.
doi:
10.11862/CJIC.20230387
Zhang A, Neumeyer J L, Baldessarini R J. Recent progress in development of dopamine receptor subtype-selective agents: Potential thera-peutics for neurological and psychiatric disorders[J]. Chem. Rev., 2007,107(1):274-302. doi: 10.1021/cr050263h
Sioka C, Fotopoulos A, Kyritsis A P. Recent advances in PET imaging for evaluation of Parkinson's disease[J]. Eur. J. Nucl. Med. Mol. Imag., 2010,37(8):1594-1603. doi: 10.1007/s00259-009-1357-9
Ametamey S M, Honer M, Schubiger P A. Molecular imaging with PET[J]. Chem. Rev., 2008,108(5):1501-1516. doi: 10.1021/cr0782426
Raviña E, Negreira J, Cid J, Masaguer C F, Rosa E, Rivas M E, Fontenla J A, Loza M I, Tristán H, Cadavid M I, Sanz F, Lozoya E, Carotti A, Carrieri A. Conformationally constrained butyrophenones with mixed dopaminergic (D2) and serotoninergic (5-HT2A, 5-HT2C) affinities: Synthesis, pharmacology, 3D-QSAR, and molecular modeling of (aminoalkyl) benzo-and-thienocycloalkanones as putative atypical antipsychotics[J]. J. Med. Chem., 2000,43(6):1250-1250. doi: 10.1021/jm9911837
De P, Roy K. QSAR modeling of PET imaging agents for the diagnosis of Parkinson's disease targeting dopamine receptor[J]. Theor. Chem. Acc., 2020,139(12)176. doi: 10.1007/s00214-020-02687-9
Kilbourn M R. 11C-and 18F-radiotracers for in vivo imaging of the dopamine system: Past, present and future[J]. Biomedicines, 2021,9(2)108. doi: 10.3390/biomedicines9020108
Libert L C, Franci X, Plenevaux A R, Ooi T, Maruoka K, Luxen A J, Lemaire C F. Production at the curie level of no-carrier-added 6-[18F] fluoro-L-DOP[J]. J. Nucl. Med., 2013,54(7):1154-1161. doi: 10.2967/jnumed.112.112284
Neves A C B, Hrynchak I, Fonseca I, Alves V H P, Pereira M M, Falcao A, Abrunhosa A J. Advances in the automated synthesis of 6-18F fluoro-L-DOPA[J]. EJNMMI Radiopharm. Chem., 2021,6(1)18. doi: 10.1186/s41181-021-00132-1
ZUO C T. The Applications of 18F-DOPA PET in Parkinson's disease[J]. International Journal of Radiation Medicine and Nuclear Medicine, 2000,24(1):4-7.
Doudet D J, Mclellan C A, Carson R, Adams H R, Miyake H, Aigner T G, Finn R T, Cohen R M. Distribution and kinetics of 3-O-methyl-6-[18F]fluoro-L-DOPA in the rhesus monkey brain[J]. J. Cereb. Blood Flow Metab., 1991,11(5):726-734. doi: 10.1038/jcbfm.1991.129
Huang S C, Yu D C, Barrio J R, Grafton S, Melega W P, Hoffman J M, Satyamurthy N, Mazziotta J C, Phelps M E. Phelps M E. Kinetics and modeling of L-6-[18F]fluoro-DOPA in human positron emission tomographic studies[J]. J. Cereb. Blood Flow Metab., 1991,11(6):898-913. doi: 10.1038/jcbfm.1991.155
Morrish P K, Sawle G V, Brooks D J. Regional changes in[18F] DOPA metabolism in the striatum in Parkinson's disease[J]. Brain, 1996,119(6):2097-2103. doi: 10.1093/brain/119.6.2097
Morrish P K, Rakshi J S, Bailey D L, Sawle G V, Brooks D J. Measuring the rate of progression and estimating the preclinical period of Parkinson's disease with[18F]dopa PET[J]. J. Neurol. Neurosurg. Psy-chiatry, 1998,64(3):314-319. doi: 10.1136/jnnp.64.3.314
Gallagher C L, Holden J, Christian B, Harding S, Nickles R J, Johnson S. A within-subject comparison of 6-[18F]fluoro-m-tyrosine (FMT) and 6-[18F]fluoro-l-DOPA (FDOPA) in Parkinson disease (PD)[J]. Neuroimage, 2010,52:S75-S75. doi: 10.1016/j.neuroimage.2010.04.059
Brooks D J. Molecular imaging of dopamine transporters[J]. Ageing Res. Rev., 2016,30:114-121. doi: 10.1016/j.arr.2015.12.009
Lee C S, Samii A, Sossi V, Ruth T J, Schulzer M, Holden J E, Wudel J, Pal P K, De La Fuente-Fernandez R, Calne D B, Stoessl A J. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease[J]. Ann. Neurol., 2000,47(4):493-503. doi: 10.1002/1531-8249(200004)47:4<493::AID-ANA13>3.0.CO;2-4
Stehouwer J S, Goodman M M. Fluorine-18 radiolabeled PET tracers for imaging monoamine transporters: Dopamine, serotonin, and nor-epinephrine[J]. PET Clinics, 2009,4(1):101-128. doi: 10.1016/j.cpet.2009.05.006
Clarke R L, Daum S J, Gambino A J, Aceto M D, Pearl J, Levitt M, Cumiskey W R, Bogado E F. Compounds affecting the central nervous system. 4. 3 beta-phenyltropane-2-carboxylic esters and analogs[J]. J. Med. Chem., 1973,16(11):1260-1267. doi: 10.1021/jm00269a600
Jin C, Navarro H A, Carroll F I. Synthesis and structure-activity relationship of 3 beta-(4-alkylthio, -methylsulfinyl, and-methylsulfonyl-phenyl) tropane and 3 beta-(4-alkylthiophenyl) nortropane derivatives for monoamine transporters[J]. Biorg. Med. Chem., 2009,17(14):5126-5132. doi: 10.1016/j.bmc.2009.05.052
Carroll F I, Gao Y G, Rahman M A, Abraham P, Parham K, Lewin A H, Boja J W, Kuhar M J. Synthesis, ligand binding, QSAR, and CoMFA study of 3 beta-(p-substituted phenyl) tropane-2 beta-carboxylic acid methyl esters[J]. J. Med. Chem., 1991,34(9):2719-2725. doi: 10.1021/jm00113a008
Carroll F I. 2002 Medicinal chemistry division award address: Mono-amine transporters and opioid receptors. Targets for addiction therapy[J]. J. Med. Chem., 2003,46(10):1775-1794.
Meltzer P C, Liang A Y, Brownell A L, Elmaleh D R, Madras B K. Substituted 3-phenyltropane analogs of cocaine: Synthesis, inhibition of binding at cocaine recognition sites, and positron emission tomography imaging[J]. J. Med. Chem., 1993,36(7):855-862. doi: 10.1021/jm00059a010
Riss P J, Stockhofe K, Roesch F. Tropane-derived 11C-labelled and 18F-labelled DAT ligands[J]. J. Labelled Compd. Radiopharm., 2013,56(3/4):149-158.
Kerstens V S, Fazio P, Sundgren M, Matheson G J, Franzen E, Halldin C, Cervenka S, Svenningsson P, Varrone A. Reliability of dopamine transporter PET measurements with[18F]FE-PE2I in patients with Parkinson's disease[J]. EJNMMI Res., 2020,10(1)95. doi: 10.1186/s13550-020-00676-4
Cao S S, Tang J, Liu C Y, Fang Y, Ji L Y, Xu Y J, Chen Z P. Synthesis and biological evaluation of[18F]FECNT-d4 as a novel PET agent for dopamine transporter imaging[J]. Mol. Imaging Biol., 2021,23(5):733-744. doi: 10.1007/s11307-021-01603-2
Fan K L, Zhao H G, Li Y H, Du X X, Dai Y Y, Gao L L, Li Y, Sun Z H, Zhang Y. Characteristics and influencing factors of 11C-CFT PET imaging in patients with early and late onset Parkinson's disease[J]. Front. Neurol., 2023,141195577. doi: 10.3389/fneur.2023.1195577
Ouchi Y, Kanno T, Okada H, Yoshikawa E, Futatsubashi M, Nobezawa S, Torizuka T, Tanaka K. Changes in dopamine availability in the nigrostriatal and mesocortical dopaminergic systems by gait in Parkinson's disease[J]. Brain, 2001,124(4):784-792. doi: 10.1093/brain/124.4.784
Sun X, Liu F, Li Q Y, Gai Y K, Ruan W W, Wimalarathne D N, Hu F, Tan X B, Lan X L. Quantitative research of 11C-CFT and 18F-FDG PET in Parkinson's disease: A pilot study with NeuroQ software[J]. Front. Neurosci., 2019,13299. doi: 10.3389/fnins.2019.00299
Nurmi E, Ruottinen H M, Kaasinen V, Bergman J, Haaparanta M, Solin O, Rinne J O. Progression in Parkinson's disease: A positron emission tomography study with a dopamine transporter ligand[18F] CF[J]. Ann. Neurol., 2000,47(6):804-808. doi: 10.1002/1531-8249(200006)47:6<804::AID-ANA14>3.0.CO;2-F
Park E, Hwang Y M, Lee C N, Kim S, Oh S Y, Kim Y C, Choe J G, Park K W. Differential diagnosis of patients with inconclusive Parkinsonian features using[18F]FP-CIT PET/CT[J]. Nucl. Med. Molec. Imag., 2014,48(2):106-113. doi: 10.1007/s13139-013-0253-1
Kerstens V S, Fazio P, Sundgren M, Halldin C, Svenningsson P, Varrone A. [18F]FE-PE2I DAT correlates with Parkinson's disease duration, stage, and rigidity/bradykinesia scores: A PET radioligand validation study[J]. EJNMMI Res., 2023,13(1)29. doi: 10.1186/s13550-023-00974-7
Fazio P, Svenningsson P, Cselenyi Z, Halldin C, Farde L, Varrone A. Nigrostriatal dopamine transporter availability in early Parkinson's disease[J]. Mov. Disord., 2018,33(4):592-599. doi: 10.1002/mds.27316
Mo S J, Axelsson J, Jonasson L, Larsson A, Ogren M J, Ogren M, Varrone A, Eriksson L, Backstrom D, af Bjerken S, Linder J, Riklund K. Dopamine transporter imaging with[18F]FE-PE2I PET and[123I]FP-CIT SPECTa clinical comparison[J]. EJNMMI Res., 2018,8100. doi: 10.1186/s13550-018-0450-0
Marner L, Korsholm K, Anderberg L, Lonsdale M N, Jensen M R, Brodsgaard E, Denholt C L, Gillings N, Law I, Friberg L. [18F]FE-PE2I PET is a feasible alternative to[123I]FP-CIT SPECT for dopamine transporter imaging in clinically uncertain parkinsonism[J]. EJNMMI Res., 2022,12(1)56. doi: 10.1186/s13550-022-00930-x
Kerstens V S, Varrone A. Dopamine transporter imaging in neurode-generative movement disorders: PET vs. SPECT[J]. Clin. Transl. Imaging, 2020,8(5):349-356. doi: 10.1007/s40336-020-00386-w
Chalon S, Vercouillie J, Payoux P, Deloye J B, Malherbe C, Le Jeune F, Arlicot N, Salabert A S, Guilloteau D, Emond P, Ribeiro M J. The story of the dopamine transporter PET tracer LBT-999:From conception to clinical use[J]. Front. Med., 2019,690. doi: 10.3389/fmed.2019.00090
Niznik H B, Van Tol H H M. Dopamine receptor genes: New tools for molecular psychiatry[J]. J. Psychiatry Neurosci., 1992,17(4):158-180.
Banerjee A, Prante O. Subtype-selective dopamine receptor radioligands for PET imaging: Current status and recent developments[J]. Curr. Med. Chem., 2012,19(23):3957-3966. doi: 10.2174/092986712802002518
Halldin C, Stone-Elander S, Farde L, Ehrin E, Fasth K J, Långström B, Sedvall G. Preparation of 11C-labelled SCH 23390 for the in vivo study of dopamine D1 receptors using positron emission tomography[J]. Int. J. Rad. Appl. Instrum. A, 1986,37(10):1039-1043. doi: 10.1016/0883-2889(86)90044-4
Halldin C, Foged C, Farde L, Karlsson P, Hansen K, Grønvald F, Swahn C G, Hall H, Sedvall G. [11C]NNC 687 and[11C]NNC 756, dopamine D1 receptor ligands. Preparation, autoradiography and PET investigation in monkey[J]. Nucl. Med. Biol., 1993,20(8):945-953. doi: 10.1016/0969-8051(93)90095-C
Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y Y, Hwang D R, Keilp J, Kochan L, Van Heertum R, Gorman J M, Laruelle M. Prefrontal dopamine D1 receptors and working memory in schizophrenia[J]. J. Neurosci., 2002,22(9):3708-3719. doi: 10.1523/JNEUROSCI.22-09-03708.2002
Kosaka J, Takahashi H, Ito H, Takano A, Fujimura Y, Matsumoto R, Nozaki S, Yasuno F, Okubo Y, Kishimoto T, Suhara T. Decreased binding of[11C]NNC112 and[11C]SCH23390 in patients with chronic schizophrenia[J]. Life Sci., 2010,86(21/22):814-818.
Abi-Dargham A, Xu X, Thompson J L, Gil R, Kegeles L S, Urban N, Narendran R, Hwang D R, Laruelle M, Slifstein M. Increased prefrontal cortical D1 receptors in drug naive patients with schizophrenia: A PET study with[11C]NNC112[J]. J. Psychopharm., 2012,26(6):794-805. doi: 10.1177/0269881111409265
Besret L, Dollé F, Hérard A S, Guillermier M, Demphel S, Hinnen F, Coulon C, Ottaviani M, Bottlaender M, Hantraye P, Kassiou M. Dopamine D1 receptor imaging in the rodent and primate brain using the isoquinoline (+)-[11C]A-69024 and positron emission tomography[J]. J. Pharm. Sci., 2008,97(7):2811-2819. doi: 10.1002/jps.21168
Kassiou M, Scheffel U, Ravert H T, Mathews W B, Musachio J L, Lambrecht R M, Dannals R F. [11C]A-69024-A potent and selective non-benzazepine radiotracer for in-vivo studies of dopamine D1 receptors[J]. Nucl. Med. Biol., 1995,22(2):221-226. doi: 10.1016/0969-8051(94)00086-Y
Tang C, Tomkins D M, Sanci V, Houle S, Dasilva J N. Chronic ethanol increases binding of dopamine D1 agonist R-[11C]SKF 82957 in vivo in rat brain[J]. Society for Neuroscience Abstracts, 2000,26(1/2)Abstract No.-290.295.
Dasilva J N, Schwartz R A, Greenwald E R, Lourenco C M, Wilson A A, Houle S. Dopamine D1 agonist R-[11C]SKF 82957: Synthesis and in vivo characterization in rats[J]. Nucl. Med. Biol., 1999,26(5):537-542. doi: 10.1016/S0969-8051(99)00015-3
Palner M, Mccormick P, Parkes J, Knudsen G M, Wilson A A. Systemic catechol-O-methyl transferase inhibition enables the D1 agonist radiotracer R-[11C]SKF 82957[J]. Nucl. Med. Biol., 2010,37(7):837-843. doi: 10.1016/j.nucmedbio.2010.04.193
Barret O, Zhang L, Alagille D, Constantinescu C C, Sandiego C, Papin C, Sullivan J M, Morley T, Carroll V M, Seibyl J, Chen J, Lee C, Villalobos A, Gray D, Mccarthy T J, Tamagnan G. Dopamine D1 receptor agonist PET tracer development: Assessment in nonhuman primates[J]. J. Nucl. Med., 2021,62(9):1307-1313. doi: 10.2967/jnumed.120.256008
Nishi A, Shuto T. Potential for targeting dopamine/DARPP-32 signaling in neuropsychiatric and neurodegenerative disorders[J]. Expert Opin. Ther. Targets., 2017,21(3):259-272. doi: 10.1080/14728222.2017.1279149
DENG Y J, ZHU H, YANG Z, PENG Z P, JIA J H. Recent progress of PET radio-tracer for clinical use in central nervous system[J]. Isotope, 2020,33(4):250-262.
Sikazwe D M N, Li S M, Mardenborough L, Cody V, Roth B L, Ablordeppey S Y. Haloperidol: Towards further understanding of the structural contributions of its pharmacophric elements at D2-like receptors[J]. Bioorg. Med. Chem. Lett., 2004,14(23):5739-5742. doi: 10.1016/j.bmcl.2004.09.046
Im D, Inoue A, Fujiwara T, Nakane T, Yamanaka Y, Uemura T, Mori C, Shiimura Y, Kimura K T, Asada H, Nomura N, Tanaka T, Yamashita A, Nango E, Tono K, Kadji F M N, Aoki J, Iwata S, Shimamura T. Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone[J]. Nat. Commun., 2020,11(1)6442. doi: 10.1038/s41467-020-20221-0
Wagner H N, Burns H D, Dannals R F, Wong D F, Langstrom B, Duelfer T, Frost J J, Ravert H T, Links J M, Rosenbloom S B, Lukas S E, Kramer A V, Kuhar M J. Imaging dopamine-receptors in the human-brain by positron tomography[J]. Science, 1983,221(4617):1264-1266. doi: 10.1126/science.6604315
Welch M J, Katzenellenbogen J A, Mathias C J, Brodack J W, Carlson K E, Chi D Y, Dence C S, Kilbourn M R, Perlmutter J S, Raichle M E, Terpogossian M M. N-(3-[18Ffluoropropyl)-spiperone: The preferred 18F labeled spiperone analog for positron emission tomographic studies of the dopamine receptor[J]. Nucl. Med. Biol., 1988,15(1):83-97.
De Paulis T. The discovery of epidepride and its analogs as high-affinity radioligands for imaging extrastriatal dopamine D2 receptors in human brain[J]. Curr. Pharm. Des., 2003,9(8):673-696. doi: 10.2174/1381612033391135
Sawle G V, Playford E D, Brooks D J, Quinn N, Frackowiak R S J. Asymmetrical presynaptic and postsynaptic changes in the striatal dopamine projection in dopa naive parkinsonism-diagnostic implications of the D2 receptor status[J]. Brain, 1993,116:853-867. doi: 10.1093/brain/116.4.853
Murakami S, Marubayashi N, Fukuda T, Takehara S, Tahara T. Anti-dopaminergic effects of the stereoisomers of N-(1-alkyl-2-pyrrolidinyl) methyl-5-sulfamoylbenzamides and 2, 3-dihydrobenzofuran-7-carboxamides[J]. J. Med. Chem., 1991,34(1):261-267. doi: 10.1021/jm00105a041
Mukherjee J, Yang Z Y, Das M K, Brown T. Fluorinated benzamide neuroleptics .3. development of (S)-N-(1-allyl-2-pyrrolidinyl) methyl-5-(3-[18Ffluoropropyl)-2, 3-dimethoxybenzamide as an improved dopamine D2 receptor tracer[J]. Nucl. Med. Biol., 1995,22(3):283-296. doi: 10.1016/0969-8051(94)00117-3
Buchsbaum M S, Christian B T, Lehrer D S, Narayanan T K, Shi B, Mantil J, Kemether E, Oakes T R, Mukherjee J. D2/D3 dopamine receptor binding with[F-18] fallypride in thalamus and cortex of patients with schizophrenia[J]. Schizophr. Res., 2006,85(1):232-244.
Grunder G, Landvogt C, Vernaleken I, Buchholz H G, Ondracek J, Siessmeier T, Hartter S, Schreckenberger M, Stoeter P, Hiemke C, Rosch F, Wong D F, Bartenstein P. The striatal and extrastriatal D2/D3 receptor-binding profile of clozapine in patients with schizophrenia[J]. Neuropsychopharmacology, 2006,31(5):1027-1035. doi: 10.1038/sj.npp.1300931
Fisher B E, Li Q, Nacca A, Salema G J, Song J, Yip J, Hui J S, Jakowec M W, Petzinger G M. Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson's disease[J]. Neuroreport, 2013,24(10):509-514. doi: 10.1097/WNR.0b013e328361dc13
Mukherjee J, Shi B, Christian B T, Chattopadhyay S, Narayanan T K. 11C-fallypride: Radiosynthesis and preliminary evaluation of a novel dopamine D2/D3 receptor PET radiotracer in non-human primate brain[J]. Biorg. Med. Chem., 2004,12(1):95-102. doi: 10.1016/j.bmc.2003.10.020
Mukherjee J, Narayanan T K, Christian B T, Shi B Z, Dunigan K A, Mantil J. In vitro and in vivo evaluation of the binding of the dopamine D2 receptor agonist C-11-(R,S)-5-hydroxy-2-(di-n-propylamino) tetralin in rodents and nonhuman primate[J]. Synapse, 2000,37(1):64-70. doi: 10.1002/(SICI)1098-2396(200007)37:1<64::AID-SYN7>3.0.CO;2-F
Narendran R, Slifstein M, Guillin O, Hwang Y Y, Hwang D R, Scher E, Reeder S, Rabiner E, Laruelle M. Dopamine D2/3 receptor agonist positron emission tomography radiotracer[11C]-(+)-PHNO is a D3 receptor preferring agonist in vivo[J]. Synapse, 2006,60(7):485-495. doi: 10.1002/syn.20325
Tziortzi A C, Searle G E, Tzimopoulou S, Salinas C, Beaver J D, Jenkinson M, Laruelle M, Rabiner E A, Gunn R N. Imaging dopamine receptors in humans with[11C]-(+)-PHNO: Dissection of D3 signal and anatomy[J]. Neuroimage, 2011,54(1):264-277. doi: 10.1016/j.neuroimage.2010.06.044
Zhang A, Zhang Y, Branfman A R, Baldessarini R J, Neumeyer J L. Advances in development of dopaminergic aporphinoids[J]. J. Med. Chem., 2007,50(2):171-181. doi: 10.1021/jm060959i
Narendran R, Hwang D R, Slifstein M, Talbot P S, Erritzoe D, Huang Y Y, Cooper T B, Martinez D, Kegeles L S, Abi-Dargham A, Laruelle M. In vivo vulnerability to competition by endogenous dopamine: Comparison of the D2 receptor agonist radiotracer (-)-N-[11C] propyl-norapomorphine ([11] NPA) with the D2 receptor antagonist radiotracer[11C]raclopride[J]. Synapse, 2004,52(3):188-208. doi: 10.1002/syn.20013
Joyce J N, Milian M J. Dopamine D3 receptor antagonists as therapeutic agents[J]. Drug Discovery Today, 2005,10(13):917-925. doi: 10.1016/S1359-6446(05)03491-4
Rubi B, Ljubicic S, Pournourmohammadi S, Carobbio S, Armanet M, Bartley C, Maechler P. Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion[J]. J. Biol. Chem., 2005,280(44):36824-36832. doi: 10.1074/jbc.M505560200
Sokoloff P, Giros B, Martres M P, Bouthenet M L, Schwartz J C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics[J]. Nature, 1990,347(6289):146-151. doi: 10.1038/347146a0
Chien E Y T, Liu W, Zhao Q, Katritch V, Han G W, Hanson M A, Shi L, Newman A H, Javitch J A, Cherezov V, Stevens R C. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist[J]. Science, 2010,330(6007):1091-1095. doi: 10.1126/science.1197410
Xu J B, Hassanzadeh B, Chu W H, Tu Z D, Jones L A, Luedtke R R, Perlmutter J S, Mintun M A, Mach R H. [3H]4-(dimethylamino)-N-(4-(4-(2-methoxyphenyl) piperazin-1-yl) butyl) benzamide: A selective radioligand for dopamine D3 receptors. Ⅱ. Quantitative analysis of dopamine D3 and D2 receptor density ratio in the caudate-putamen[J]. Synapse, 2010,64(6):449-459. doi: 10.1002/syn.20748
Wang Q, Mach R H, Luedtke R R, Reichert D E. Subtype selectivity of dopamine receptor ligands: Insights from structure and ligand-based methods[J]. J. Chem. Inf. Model., 2010,50(11):1970-1985. doi: 10.1021/ci1002747
Newman A H, Beuming T, Banala A K, Donthamsett P, Pongetti K, Labounty A, Levy B, Cao J J, Michino M, Luedtke R R, Javitch J A, Shi L. Molecular determinants of selectivity and efficacy at the dopamine D3 receptor[J]. J. Med. Chem., 2012,55(15):6689-6699. doi: 10.1021/jm300482h
Tu Z, Li S, Cui J, Xu J, Taylor M, Ho D, Luedtke R R, Mach R H. Synthesis and pharmacological evaluation of fluorine-containing D3 dopamine receptor ligands[J]. J. Med. Chem., 2011,54(6):1555-1564. doi: 10.1021/jm101323b
Mach R H, Tu Z D, Xu J B, Li S H, Jones L A, Taylor M, Luedtke R R, Derdeyn C P, Perlmutter J S, Mintun M A. Endogenous dopamine (DA) competes with the binding of a radiolabeled D3 receptor partial agonist in vivo: A positron emission tomography study[J]. Synapse, 2011,65(8):724-732. doi: 10.1002/syn.20891
Doot R K, Young A J, Dominguez T L, Ward C G, Li S, Helili Z, Sheffer R, Lee H, Schubert E K, Mach R H, Dubroff J G. Human blocking study to assess selectivity of [18FFTP PET for dopamine D3 receptors[J]. J. Cereb. Blood Flow Metab., 2021,41(Suppl1):244-245.
Prante O, Tietze R, Hocke C, Loeber S, Huebner H, Kuwert T, Gmeiner P. Synthesis, radiofluorination, and in vitro evaluation of pyrazolo[1, 5-a] pyridine-based dopamine D4 receptor ligands: Discovery of an inverse agonist radioligand for PET[J]. J. Med. Chem., 2008,51(6):1800-1810. doi: 10.1021/jm701375u
Tietze R, Loeber S, Huebner H, Gmeiner P, Kuwert T, Prante O. Discovery of a dopamine D4 selective PET ligand candidate taking advantage of a click chemistry based REM linker[J]. Bioorg. Med. Chem. Lett., 2008,18(3):983-988. doi: 10.1016/j.bmcl.2007.12.026
Willmann M, Ermert J, Prante O, Huebner H, Gmeiner P, Neumaier B. Radiosynthesis and evaluation of 18F-labeled dopamine D4-receptor ligands[J]. Nucl. Med. Biol., 2021,92:43-52. doi: 10.1016/j.nucmedbio.2020.07.004
YU C C, ZENG C Y, YANG Z W. The role of dopamine D5 receptor in blood pressure regulation[J]. Chinese Journal of Hypertension, 2007,14(2):98-100.
Giorgioni G, Piergentili A, Ruggieri S, Quaglia W. Dopamine D5 receptors: A challenge to medicinal chemists[J]. Mini-Rev. Med. Chem., 2008,8(10):976-995. doi: 10.2174/138955708785740661
QIAO J P, QIAO H W, WU X Y, DENG A F, ZHU L. Recent advances in PET tracers for imaging of the dopaminergic system[J]. Chemistry of Life, 2014,34(2):154-165.
Kish S J, Robitaille Y, Elawar M, Clark B, Schut L, Ball M J, Young L T, Currier R, Shannak K. Striatal monoamine neurotransmitters and metabolites in dominantly inherited olivopontocerebellar atrophy[J]. Neurology, 1992,42(8):1573-1577. doi: 10.1212/WNL.42.8.1573
Dasilva J N, Kilbourn M R, Mangner T J. Synthesis of[11C] tetrabenazine, a vesicular monoamine uptake inhibitor, for PET imaging studies[J]. Appl. Radiat. Isot., 1993,44(4):673-676. doi: 10.1016/0969-8043(93)90130-3
Kilbourn M R, Dasilva J N, Frey K A, Koeppe R A, Kuhl D E. In vivo imaging of vesicular monoamine transporters in human brain using[11C] tetrabenazine and positron emission tomography[J]. J. Neurochem., 1993,60(6):2315-2318. doi: 10.1111/j.1471-4159.1993.tb03521.x
Dasilva J N, Carey J E, Sherman P S, Pisani T J, Kilbourn M R. Characterization of 11C tetrabenazine as an in-vivo radioligand for the vesicular monoamine transporter[J]. Nucl. Med. Biol., 1994,21(2):151-156. doi: 10.1016/0969-8051(94)90003-5
Schwartz D E, Bruderer H, Rieder J, Brossi A. Metabolic studies of tetrabenazine, a psychotropic drug in animals and man[J]. Biochem. Pharmacol., 1966,15(5):645-655. doi: 10.1016/0006-2952(66)90031-1
Frey K A, Koeppe R A, Kilbourn M R, Vanderborght T M, Albin R L, Gilman S, Kuhl D E. Presynaptic monoaminergic vesicles in Parkinson's disease and normal aging[J]. Ann. Neurol., 1996,40(6):873-884. doi: 10.1002/ana.410400609
Bohnen N I, Albin R L, Koeppe R A, Wernette K A, Kilbourn M R, Minoshima S, Frey K A. Positron emission tomography of monoami-nergic vesicular binding in aging and Parkinson disease[J]. J. Cereb. Blood Flow Metab., 2006,26(9):1198-1212. doi: 10.1038/sj.jcbfm.9600276
Johanson C E, Frey K A, Lundahl L H, Keenan P, Lockhart N, Roll J, Galloway G P, Koeppe R A, Kilbourn M R, Robbins T, Schuster C R. Cognitive function and nigrostriatal markers in abstinent metham-phetamine abusers[J]. Psychopharmacology, 2006,185(3):327-338. doi: 10.1007/s00213-006-0330-6
Boileau I, Mccluskey T, Tong J, Furukawa Y, Houle S, Kish S J. Rapid recovery of vesicular dopamine levels in methamphetamine users in early abstinence[J]. Neuropsychopharmacology, 2016,41(4):1179-1187. doi: 10.1038/npp.2015.267
Kilbourn M R, Koeppe R A. Classics in neuroimaging: Radioligands for the vesicular monoamine transporter 2[J]. ACS Chem. Neurosci., 2019,10(1):25-29. doi: 10.1021/acschemneuro.8b00429
Kilbourn M R, Frey K A, Borght T V, Sherman P S. Effects of dopaminergic drug treatments on in vivo radioligand binding to brain vesicular monoamine transporters[J]. Nucl. Med. Biol., 1996,23(4):467-471. doi: 10.1016/0969-8051(96)00023-6
Lee C S, Schulzer M, De La Fuente-Fernández R, Mak E, Kuramoto L, Sossi V, Ruth T J, Calne D B, Stoessl A J. Lack of regional selectivity during the progression of parkinson disease: Implications for pathogenesis[J]. Arch. Neurol., 2004,61(12):1920-1925.
Alexander P K, Lie Y, Jones G, Sivaratnam C, Bozinvski S, Mulligan R S, Young K, Villemagne V L, Rowe C C. Management impact of imaging brain vesicular monoamine transporter type 2 in clinically uncertain parkinsonian syndrome with 18F-AV133 and PET[J]. J. Nucl. Med., 2017,58(11):1815-1820. doi: 10.2967/jnumed.116.189019
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Di WU , Ruimeng SHI , Zhaoyang WANG , Yuehua SHI , Fan YANG , Leyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Wenkai Chen , Yunjia Shen , Xiangmeng Kong , Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154