Citation: Ruolin CHENG, Haoran WANG, Jing REN, Yingying MA, Huagen LIANG. Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349 shu

Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst

Figures(10)

  • Zr-based metal-organic framework (MOF) NH2-UiO-66 was first synthesized by a solvothermal method using 2-amino terephthalic acid (H2ATA) as the ligand. The efficient W18O49/NH2-UiO-66 photocatalysts with a typical type Ⅱ heterojunction were then constructed by in-situ growth of the oxygen vacancy-rich defective tungsten oxide (W18O49) on NH2-UiO-66, using tungsten chloride as the precursor. The composition and structure of the catalysts were characterized by a series of measurements, including powder X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy. At room temperature and atmospheric pressure, the photoactivity of all the catalysts was examined under simulated sunlight with styrene oxide as the model substrate. W18O49/NH2-UiO-66 exhibited the highest yield of styrene carbonate (58 mmol·g-1·h-1). The introduction of NH2-UiO-66 expanded the specific surface area, CO2 adsorption capacity, light harvesting ability, and photogenerated charge carriers transfer of W18O49.
  • 加载中
    1. [1]

      Chen L L, Lu S J, Zhang L, Zhang C J, Liu L, Kang G J, Tang H, Chen S M. Solid waste of fly ash toward energy-efficient CO2 capture[J]. ACS Sustain. Chem. Eng., 2023,11:8281-8293. doi: 10.1021/acssuschemeng.3c00657

    2. [2]

      Lv C C, Bai X H, Ning S B, Song C X, Guan Q Q, Liu B, Li Y G, Ye J H. Nanostructured materials for photothermal carbon dioxide hydrogenation: Regulating solar utilization and catalytic performance[J]. ACS Nano, 2023,17(3):1725-1738. doi: 10.1021/acsnano.2c09025

    3. [3]

      LAN D H, TANG T, DAI W L, TAN N Y, WU S S, AU C T, YI B. Synergistic effects in multi-group functionalized graphene oxide for CO2 cycloaddition reaction[J]. Chinese J. Inorg. Chem., 2019,35(3):442-448.  

    4. [4]

      ZHAO D, LIAO Z T, ZHANG W, CHEN Z Z, SUN W Y. Progress in functional metal-organic frameworks for catalytic conversion of carbon dioxide[J]. Chinese J. Inorg. Chem., 2021,37(7):1153-1176.  

    5. [5]

      Sharma N, Dhankhar S S, Nagaraja C M. A Mn(Ⅱ)-porphyrin based metal-organic framework (MOF) for visible-light-assisted cycloaddition of carbon dioxide with epoxides[J]. Microporous Mesoporous Mat., 2019,280:372-378. doi: 10.1016/j.micromeso.2019.02.026

    6. [6]

      Zhai G Y, Liu Y Y, Lei L F, Wang J J, Wang Z Y, Zheng Z K, Wang P, Cheng H F, Dai Y, Huang B B. Light-promoted CO2 conversion from epoxides to cyclic carbonates at ambient conditions over a Bi-based metal-organic framework[J]. ACS Catal., 2021,11(4):1988-1994. doi: 10.1021/acscatal.0c05145

    7. [7]

      Zhai G Y, Liu Y Y, Mao Y Y, Zhang H G, Lin L T, Li Y J, Wang Z Y, Cheng H F, Wang P, Zheng Z K, Dai Y, Huang B B. Improved photocatalytic CO2 and epoxides cycloaddition via the synergistic effect of Lewis acidity and charge separation over Zn modified UiO-bpydc[J]. Appl. Catal. B-Environ., 2022,301120793. doi: 10.1016/j.apcatb.2021.120793

    8. [8]

      Huang Z W, Hu K Q, Mei L, Wang C Z, Chen Y M, Wu W S, Chai Z F, Shi W Q. Potassium ions induced framework interpenetration for enhancing the stability of uranium-based porphyrin MOF with visible-light-driven photocatalytic activity[J]. Inorg. Chem., 2021,60(2):651-659. doi: 10.1021/acs.inorgchem.0c02473

    9. [9]

      Zhang H G, Zhai G Y, Lei L F, Zhang C Y, Liu Y Y, Wang Z Y, Cheng H F, Zheng Z K, Wang P, Dai Y, Huang B B. Photo-induced photo-thermal synergy effect leading to efficient CO2 cycloaddition with epoxide over a Fe-based metal organic framework[J]. J. Colloid Interface Sci., 2022,625:33-40. doi: 10.1016/j.jcis.2022.05.146

    10. [10]

      Liu L F, Zhang J L, Cheng X Y, Xu M Z, Kang X C, Wan Q, Han B X, Wu N N, Zheng L R, Ma C Y. Amorphous NH2-MIL-68 as an efficient electro- and photo-catalyst for CO2 conversion reactions[J]. Nano Res., 2022,16(1):181-188.

    11. [11]

      Cheng R L, Wang A H, Sang S X, Liang H G, Liu S Q, Tsiakaras P. Photocatalytic CO2 cycloaddition over highly efficient W18O49-based composites: An economic and ecofriendly choice[J]. Chem. Eng. J., 2023,466142982. doi: 10.1016/j.cej.2023.142982

    12. [12]

      Chen L Y, Yu F Y, Shen X S, Duan C Y. N-CND modified NH2-UiO-66 for photocatalytic CO2 conversion under visible light by a photo-induced electron transfer process[J]. Chem. Commun., 2019,55(33):4845-4848. doi: 10.1039/C9CC02193K

    13. [13]

      Cheng R L, Steele J A, Roeffaers M B J, Hofkens J, Debroye E. Dual-channel charge carrier transfer in CsPbX3 perovskite/W18O49 composites for selective photocatalytic benzyl alcohol oxidation[J]. ACS Appl. Energ. Mater., 2021,4(4):3460-3468. doi: 10.1021/acsaem.0c03215

    14. [14]

      ZHOU X, FENG T, GAO S T, YANG L L, WANG Z C, WANG N, LIU C Y, FENG C, SHANG N Z, WANG C. Visible-light responsive photocatalyst Ag/AgCl@NH2-UiO-66: Preparation and photocatalytic performance[J]. Chinese J. Inorg. Chem., 2016,32(5):769-776.  

    15. [15]

      Liang Q, Zhang M, Zhang Z H, Liu C H, Xu S, Li Z Y. Zinc phthalocyanine coupled with UiO-66 (NH2) via a facile condensation process for enhanced visible-light-driven photocatalysis[J]. J. Alloy. Compd., 2017,690:123-130. doi: 10.1016/j.jallcom.2016.08.087

    16. [16]

      Zhang N, Jalil A, Wu D X, Chen S M, Liu Y F, Gao C, Ye W, Qi Z M, Ju H X, Wang C M, Wu X J, Song L, Zhu J F, Xiong Y J. Refining defect states in W18O49 by Mo Doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation[J]. J. Am. Chem. Soc., 2018,140(30):9434-9443. doi: 10.1021/jacs.8b02076

    17. [17]

      Zhang X L, Huang W, Xia Z X, Xian M, Bu F, Liang F B, Feng D X. One-pot synthesis of S-scheme WO3/BiOBr heterojunction nanoflowers enriched with oxygen vacancies for enhanced tetracycline photodegradation[J]. Sep. Purif. Technol., 2022,290120897. doi: 10.1016/j.seppur.2022.120897

    18. [18]

      Jiang H Y, Zang C C, Guo L X, Gao X. Carbon vacancies enriched carbon nitride nanotubes for Pd coordination environment optimization: Highly efficient photocatalytic hydrodechlorination and CO2 cycloaddition[J]. Sci. Total Environ., 2022,838155920. doi: 10.1016/j.scitotenv.2022.155920

    19. [19]

      Liu C Y, Niu H H, Wang D X, Gao C, Said A, Liu Y S, Wang G, Tung C H, Wang Y F. S-scheme Bi-oxide/Ti-oxide molecular hybrid for photocatalytic cycloaddition of carbon dioxide to epoxides[J]. ACS Catal., 2022,12(14):8202-8213. doi: 10.1021/acscatal.2c02256

    20. [20]

      Li Y X, Zhang X, Lan J W, Li D Z, Wang Z J, Xu P, Sun J M. A high-performance zinc-organic framework with accessible open metal sites catalyzes CO2 and styrene oxide into styrene carbonate under mild conditions[J]. ACS Sustain. Chem. Eng., 2021,9(7):2795-2803. doi: 10.1021/acssuschemeng.0c08466

    21. [21]

      Dai W L, Zou M L, Long J F, Li B, Zhang S Q, Yang L X, Wang D, Mao P, Luo S L, Luo X B. Nanoporous N-doped carbon/ZnO hybrid derived from zinc aspartate: An acid-base bifunctional catalyst for efficient fixation of carbon dioxide into cyclic carbonates[J]. Appl. Surf. Sci., 2021,540148311. doi: 10.1016/j.apsusc.2020.148311

    22. [22]

      Xu J, Xu H, Dong A Q, Zhang H, Zhou Y T, Dong H, Tang B, Liu Y F, Zhang L X, Liu X J, Luo J, Bie L J, Dai S, Wang Y H, Sun X H, Li Y G. Strong electronic metal-support interaction between iridium single atoms and WO3 support promotes highly efficient and robust CO2 cycloaddition[J]. Adv. Mater., 2022,34(44)2206991. doi: 10.1002/adma.202206991

    23. [23]

      CHENG R L, JIN X X, FAN X Q, WANG M, TIAN J J, ZHANG L X, SHI J L. Incorporation of N-doped reduced graphene oxide into pyridine-copolymerized g-C3N4 for greatly enhanced H2 photocatalytic evolution[J]. Acta Phys.-Chim. Sin., 2017,33(7):1436-1445.  

    24. [24]

      Yang J, He X Q, Dai J, Tian R, Yuan D S. Photo-assisted enhancement performance for rapid detoxification of chemical warfare agent simulants over versatile ZnIn2S4/UiO-66-NH2 nanocomposite catalysts[J]. J. Hazard. Mater., 2021,417126056. doi: 10.1016/j.jhazmat.2021.126056

    25. [25]

      Xu Y Y, Liu M, Tong F X, Ma F H, He X Y, Wang Z Y, Wang P, Liu Y Y, Cheng H F, Dai Y, Zheng Z K, Huang B B. Strain-assisted in-situ formed oxygen defective WO3 film for photothermal-synergistic reverse water gas shift reaction and single-particle study[J]. Chem. Eng. J., 2022,433134199. doi: 10.1016/j.cej.2021.134199

  • 加载中
    1. [1]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    2. [2]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    7. [7]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    8. [8]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    9. [9]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    10. [10]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    15. [15]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    18. [18]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    20. [20]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(3)
  • Abstract views(546)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return