Citation: Xingxing ZHANG, Yunyin NIU. Synthesis of metal coordination compounds containing benzimidazole tripod ligand and their adsorption properties for iodine[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 111-123. doi: 10.11862/CJIC.20230335 shu

Synthesis of metal coordination compounds containing benzimidazole tripod ligand and their adsorption properties for iodine

  • Corresponding author: Yunyin NIU, niuyy@zzu.edu.cn
  • Received Date: 4 September 2023
    Revised Date: 29 November 2023

Figures(11)

  • Two novel metal coordination compounds [Co3(L1)2Cl6]n (1) and {[Cu(L1)(SO4)]·2CH3OH}n (2), where L1= 2, 2′, 2″-tri(1-benzimidazolyl) ethylamine, have been synthesized by solvothermal method. L1 is a neutral benzimidazole tripod ligand. Single crystal X-ray diffraction analysis shows that compound 1 is a 1D chain structure and compound 2 is a 3D structure. The purity of compounds 1 and 2 was characterized by infrared spectroscopy and powder X-ray diffraction. Thermogravimetric analysis shows that compounds 1 and 2 are heat-resistant materials. The iodine adsorption experiments show that they have high performance of capturing iodine in cyclohexane solution and gaseous iodine and have good recycling ability. At the same time, their adsorption kinetics are most suitable for the quasi-second-order model, and the adsorption process is mainly chemisorption. According to the adsorption mechanism, the structures of the compounds contain active groups such as benzene and N heterocyclic ring, which indirectly increases the adsorption site with iodine and the chemical reactivity with iodine, improving the removal rate of iodine.
  • 加载中
    1. [1]

      Yu Y N, Yi Z, Cao L H, Ma Y M. Organic porous solid as promising iodine capture materials[J]. J. Incl. Phenom. Macrocycl. Chem., 2022,102(5/6):395-427.

    2. [2]

      Wang S T, Liu Y J, Zhang C Y, Yang F, Fang W H, Zhang J. Cluster-based crystalline materials for iodine capture[J]. Chem.-Eur. J., 2022,29(2)e202202638.

    3. [3]

      Roh S, Kim D. Effect of Fukushima accident on public acceptance of nuclear energy (Fukushima accident and nuclear public acceptance)[J]. Energ. Source Part B, 2017,12(6):565-569. doi: 10.1080/15567249.2016.1230797

    4. [4]

      Yang Y T, Tu C Z, Yin H J, Liu J J, Cheng F X, Luo F. Molecular iodine capture by covalent organic frameworks[J]. Molecules, 2022,27(24)9045. doi: 10.3390/molecules27249045

    5. [5]

      Reda A T, Zhang D X, Xu X. LiAlO2-melamine for efficient and rapid iodine capture[J]. J. Environ. Chem. Eng., 2022,10(3)107842. doi: 10.1016/j.jece.2022.107842

    6. [6]

      Wang P, Xu Q, Li Z P, Jiang W M, Jiang Q H, Jiang D L. Exceptional iodine capture in 2D covalent organic frameworks[J]. Adv. Mater., 2018,30(29)1801991. doi: 10.1002/adma.201801991

    7. [7]

      Jiang M, Zhu L., Zhao Q, Chen G Y, Wang Z R, Zhang J J, Zhang L, Lei J H, Duan T. Novel synthesis of NaY-NH4F-Bi2S3 composite for enhancing iodine capture[J]. Chem. Eng. J., 2022,443136477. doi: 10.1016/j.cej.2022.136477

    8. [8]

      Pan T T, Yang K J, Dong X L, Han Y. Adsorption-based capture of iodine and organic iodides: Status and challenges[J]. J. Mater. Chem. A, 2023,11(11):5460-5475. doi: 10.1039/D2TA09448G

    9. [9]

      Xiong S H, Tao J, Wang Y Y, Tang J T, Liu C, Liu Q Q, Wang Y, Yu G P, Pan C Y. Uniform poly(phosphazene-triazine) porous microspheres for highly efficient iodine removal[J]. Chem. Commun., 2018,54(61):8450-8453. doi: 10.1039/C8CC04242J

    10. [10]

      Huve J, Ryzhikov A, Nouali H, Lalia V, Augé G, Daou T J. Porous sorbents for the capture of radioactive iodine compounds: A review[J]. RSC Adv., 2018,8(2018)29248.

    11. [11]

      Akram B, Lu Q C, Wang X. Polyoxometalate-zirconia coassembled microdumbbells for efficient capture of iodine[J]. ACS Appl. Energy Mater., 2020,2(5):461-465.

    12. [12]

      Chang J H, Li H, Zhao J, Guan X Y, Li C M, Yu G T, Valtchev V, Yan Y S, Qiu S L, Fang Q R. Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture[J]. Chem. Sci., 2021,12(24):8452-8457. doi: 10.1039/D1SC01742J

    13. [13]

      Kluijfhout W P, Pasternak J D, Drake F T, Beninato T, Shen W T, Gosnell J E, Suh I, Liu C, Duh Q Y. Application of the new American Thyroid Association guidelines leads to a substantial rate of completion total thyroidectomy to enable adjuvant radioactive iodine[J]. Surgery, 2017,161(1):127-133. doi: 10.1016/j.surg.2016.05.056

    14. [14]

      Xie Y B, Zhong F Y, Chen H X, Chen D N, Wang J W, Gao J K, Yao J M. Fabrication of hydrogen-bonded metal-complex frameworks for capturing iodine[J]. J. Solid State Chem., 2019,277:525-530. doi: 10.1016/j.jssc.2019.07.013

    15. [15]

      Yu Q, Jiang X H, Cheng Z J, Liao Y W, Duan M. Porous ZIF-8@polyacrylonitrile composite beads for iodine capture[J]. RSC Adv., 2021,11(48):3259-3269.

    16. [16]

      Wang K, Geng T M, Zhu F. The architectonics of bitetrazole-based porous organic polymers for capturing iodine and fluorescence sensing to iodine and 4-nitrophenol[J]. Polym. Adv. Technol., 2023,34(5):1529-1539. doi: 10.1002/pat.5986

    17. [17]

      Fujimori K, Kyozuka H, Yasuda S, Goto A, Yasumura S, Ota M, Ohtsuru A, Nomura Y, Hata K, Suzuki K, Nakai A, Sato M, Matsui S, Nakano K, Abe M, Null N. Pregnancy and birth survey after the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Plant accident in Fukushima prefecture[J]. Fukushima J. Med. Sci., 2014,60(1):75-81. doi: 10.5387/fms.2014-9

    18. [18]

      Kojima Y, Yokoya S, Kurita N, Idaka T, Ishikawa T, Tanaka H, Ezawa Y, Ohto H. Cryptorchidism after the Fukushima Daiichi Nuclear Power Plant accident: Causation or coincidence?[J]. Fukushima J. Med. Sci., 2019,65(3):76-98. doi: 10.5387/fms.2019-22

    19. [19]

      Constantin M, Alemtsehay Tesfay R, Dongxiang Z, Xiyan X, Chang C. An overview on metal Oxide-based materials for iodine capture and storage[J]. Chem. Eng. J., 2021,431(3)133816.

    20. [20]

      Kotcher J, Maibach E, Choi W T. Fossil fuels are harming our brains: Identifying key messages about the health effects of air pollution from fossil fuels[J]. BMC Public Health, 2019,19(1):1079-1079. doi: 10.1186/s12889-019-7373-1

    21. [21]

      Sancho M, Arnal J M, Verdú G. Ultrafiltration and reverse osmosis performance in the treatment of radioimmunoassay liquid wastes[J]. Desalination, 2006,201(1/2/3):207-215.

    22. [22]

      Feng W D, Wang Y H, Li J, Gao K, An H X. Decomposition of spent radioactive ion-exchange resin using photo-Fenton process[J]. J. Chem. Technol. Biotechnol., 2020,95(9):2522-2529. doi: 10.1002/jctb.6437

    23. [23]

      Ye Z X, Chen L F, Liu C C, Ning S Y, Wang X P, Wei Y Z. The rapid removal of iodide from aqueous solutions using a silica-based ion-exchange resin[J]. React. Funct. Polym., 2018,12(2):52-57.

    24. [24]

      Sinha P K, Lal K B, Ahmed J. Removal of radioiodine from liquid effluents[J]. Waste Manage., 1997,17(1):33-37. doi: 10.1016/S0956-053X(97)00034-2

    25. [25]

      Niu T H, Feng C C, Yao C, Yang W Y, Xu Y H. Bisimidazole-based conjugated polymers for excellent iodine capture[J]. ACS Appl. Polym. Mater., 2020,3(1):354-361.

    26. [26]

      Yin C Y, Aroua M K, Daud W M A W. Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions[J]. Sep. Purif. Technol., 2007,52(3):403-415. doi: 10.1016/j.seppur.2006.06.009

    27. [27]

      Liu S W, Kang S H, Wang H M, Wang G Z, Zhao H J, Cai W P. Nanosheets-built flowerlike micro/nanostructured Bi2O2.33 and its highly efficient iodine removal performances[J]. Chem. Eng. J., 2016,289(1):219-230.

    28. [28]

      Hughes J T, Sava D F, Nenoff T M, Navrotsky A. Thermochemical evidence for strong iodine chemisorption by ZIF-8[J]. J. Am. Chem. Soc., 2013,135(44):16256-16259. doi: 10.1021/ja406081r

    29. [29]

      Ren L Y, Geng T M. The synthesis of s-tetrazine-based porous organic polymer for fluorescence sensing of iodine, picric acid and capturing iodine[J]. J. Porous Mater., 2022,29(5):1565-1573. doi: 10.1007/s10934-022-01279-1

    30. [30]

      Kraithong S, Chailek N, Sirirak J, Suwatpipat K, Wanichacheva N, Swanglap P. Improving sensitivity of a new Hg2+-selective fluorescent sensor by silver nanoparticles via plasmonic enhancement[J]. J. Photochem. Photobiol. A, 2020,407113064.

    31. [31]

      Chirantan K, Gopal D. A retrievable fluorescence "TURN ON" sensor for sulfide anions[J]. J. Photochem. Photobiol. A, 2013,251:128-133.  

    32. [32]

      Chirantan K, Arghya B, Gopal D. Benzimidazole functionalized tripodal receptor for selective recognition of iodide[J]. Tetrahedron Lett., 2012,53(35):4754-4757. doi: 10.1016/j.tetlet.2012.06.120

    33. [33]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726

    34. [34]

      Bao S H, Wu S S, Huang L P, Xu X, Xu R, Li Y G, Liang Y R, Yang M Y, Yoon D K, Lee M, Huang Z G. Supramolecular nanopumps with chiral recognition for moving organic pollutants from water[J]. ACS Appl. Mater. Interfaces, 2019,11(34):31220-31226.

  • 加载中
    1. [1]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    2. [2]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    5. [5]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    12. [12]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    13. [13]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    18. [18]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    19. [19]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    20. [20]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

Metrics
  • PDF Downloads(2)
  • Abstract views(1037)
  • HTML views(301)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return