Citation: Wenjing SHANG, Xin DENG, Binghao WANG, Yiqin TIAN, Xiang LI, Yongbing LOU, Jinxi CHEN. Preparation and electrocatalytic performance of MoSe2/Co-MOF/NF for oxygen evolution reaction[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 79-87. doi: 10.11862/CJIC.20230284 shu

Preparation and electrocatalytic performance of MoSe2/Co-MOF/NF for oxygen evolution reaction

  • Corresponding author: Jinxi CHEN, chenjinxi@seu.edu.cn
  • Received Date: 31 July 2023
    Revised Date: 4 December 2023

Figures(10)

  • Designing efficient oxygen evolution reaction (OER) catalysts is crucial for water splitting to produce hydrogen. Based on the catalytic activity of transition metal selenides (TMSe) and the structural characteristics of metal-organic frameworks (MOFs), the work proposed a strategy to compound MOFs and TMSe. The composite material grew on conductive base nickel foam (NF) inherited the advantages of the two materials, and the defects of poor conductivity of MOFs and easy aggregation of TMSe were effectively improved. The MoSe2/Co -MOF/NF showed excellent electrochemical performance in alkaline solution, and its overpotential was only 242 mV at 10 mA·cm-2, the Tafel slope was 50.64 mV·dec-1. In addition, it exhibited good stability in an alkaline solution after 1 000 cyclic voltammetry (CV) cycles and 30 h constant voltage electrolysis test.
  • 加载中
    1. [1]

      Wang Z H, Zhou T, Chen Z, Gu R Z, Tao J W, Fan Z W, Guo L Y, Liu Y S. Three-dimensional strawlike MoSe2-Ni (Fe) Se electrocatalysts for overall water splitting[J]. Inorg Chem., 2023,62:2894-2904. doi: 10.1021/acs.inorgchem.2c04354

    2. [2]

      Chang Y, Zhai P L, Hou J G, Zhao J J, Gao J F. Excellent HER and OER catalyzing performance of Se-vacancies in defects-engineered PtSe 2:From simulation to experiment[J]. Adv. Energy Mater., 2021,122102359.

    3. [3]

      Kim E J, Shin J, Bak J, Lee S J, Kim K H, Song D H, Roh J H, Lee Y J, Kim H W, Lee K S, Cho E A. Stabilizing role of Mo in TiO2-MoOx supported Ir catalyst toward oxygen evolution reaction[J]. Appl. Catal. B-Environ., 2021,280119433. doi: 10.1016/j.apcatb.2020.119433

    4. [4]

      Xu X Y, Zhao W F, Wang L, Gao S, Li Z, Hu J C, Jiang Q Q. Anion substitution induced vacancy regulating of cobalt sulfoselenide toward electrocatalytic overall water splitting[J]. J. Colloid Interface Sci., 2023,630:580-590. doi: 10.1016/j.jcis.2022.09.073

    5. [5]

      Zhang X H, Wu A P, Wang D X, Jiao Y Q, Yan H J, Jin C X, Xie Y, Tian C G. Fine-tune the electronic structure in Co-Mo based catalysts to give easily coupled HER and OER catalysts for effective water splitting[J]. Appl. Catal. B-Environ., 2023,328122474. doi: 10.1016/j.apcatb.2023.122474

    6. [6]

      Shang W J, Li Q L, Li X, Zhang K, Wang B H, Lou Y B, Chen J X. 2D iron/cobalt metal-organic frameworks with an extended ligand for efficient oxygen evolution reaction[J]. Dalton Trans., 2023,52:8613-8619. doi: 10.1039/D3DT01175E

    7. [7]

      Jamesh M I, Sun X M. Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting-A review[J]. J. Power Sources, 2018,400:31-68. doi: 10.1016/j.jpowsour.2018.07.125

    8. [8]

      Wang Y N, Du Z Y, Xu J, Meng Z S, Zhang C X, Cui Y N, Li Y X, Jiang C, Zeng Y, Yu S S, Tian H W. Improved catalytic activity and stability of Co9S8 by Se incorporation for efficient oxygen evolution reaction[J]. Inorg. Chem., 2022,61:21139-21147. doi: 10.1021/acs.inorgchem.2c03805

    9. [9]

      Wei L T, Du M Y, Zhao R, Lv F, Li L B, Zhang L, Zhou D, Su J Z. High-valence Mo doping for highly promoted water oxidation of NiFe (oxy) hydroxide[J]. J. Mater. Chem. A, 2022,10:23790-23798. doi: 10.1039/D2TA05600C

    10. [10]

      Wygant B R, Poterek A H, Burrow J N, Mullins C B. Effect of selenium content on nickel sulfoselenide-derived nickel (oxy) hydroxide electrocatalysts for water oxidation[J]. ACS Appl. Mater. Interfaces, 2020,12:20366-20375. doi: 10.1021/acsami.0c00425

    11. [11]

      Shaikh N, Mukhopadhyay I, Ray A. Heterointerfaces of nickel sulphides and selenides on Ni-foam as efficient bifunctional electrocatalysts in acidic environments[J]. J. Mater. Chem. A, 2022,10:12733-12746. doi: 10.1039/D2TA01630C

    12. [12]

      Li X Y, Luo D, Jiang F, Zhang K J, Wang S X, Li S F, Zha Q Q, Huang Y C, Ni Y H. Electronic modulation of metal-organic frameworks caused by atomically dispersed Ru for efficient hydrogen evolution[J]. Small, 2023,192301850. doi: 10.1002/smll.202301850

    13. [13]

      Zhang H T, Guo H R, Ren J K, Jin X T, Li X P, Song R. Synergistic engineering of morphology and electronic structure in constructing metal-organic framework-derived Ru doped cobalt-nickel oxide heterostructure towards efficient alkaline hydrogen evolution reaction[J]. Chem. Eng. J., 2021,426131300. doi: 10.1016/j.cej.2021.131300

    14. [14]

      Wang S M, Zhang Y, Deng X Y, Ma Z Z, Cheng R T, Wan Z H, Li J P, Wang X G. Rational construction of loosely packed nickel nanoparticulates with residual HCOO ligands derived from a Ni-MOF for high-efficiency electrocatalytic overall water splitting[J]. J. Mater. Chem. A, 2023,11:5222-5232. doi: 10.1039/D2TA09369C

    15. [15]

      Wu F, Guo X X, Wang Q H, Lu S W, Wang J L, Hu Y B, Hao G Z, Li Q L, Yang M Q, Jiang W. A hybrid of MIL-53(Fe) and conductive sulfide as a synergistic electrocatalyst for the oxygen evolution reaction[J]. J. Mater. Chem. A, 2020,8:14574-14582. doi: 10.1039/D0TA01912G

    16. [16]

      Jin M T, Zhang X, Niu S Z, Wang Q, Huang R Q, Ling R H, Huang J Q, Shi R, Amini A, Cheng C. Strategies for designing high-performance hydrogen evolution reaction electrocatalysts at large current densities above 1000 mA·cm-2[J]. ACS Nano, 2022,16:11577-11597. doi: 10.1021/acsnano.2c02820

    17. [17]

      Xuan C J, Xia K D, Lei W, Xia W W, Xiao W P, Chen L X, Xin H L L, Wang D L. Composition-dependent electrocatalytic activities of NiFe-based selenides for the oxygen evolution reaction[J]. Electrochim. Acta, 2018,291:64-72. doi: 10.1016/j.electacta.2018.08.106

    18. [18]

      Peng X, Yan Y J, Xiong S J, Miao Y P, Wen J, Liu Z T, Gao B, Hu L S, Chu P K. Se-NiSe2 hybrid nanosheet arrays with self-regulated elemental Se for efficient alkaline water splitting[J]. J. Mater. Sci. Tech-nol., 2022,118:136-143. doi: 10.1016/j.jmst.2021.12.022

    19. [19]

      Duan S, Chen S Q, Wang T Y, Li S Z, Liu J Y, Liang J S, Xie H Q, Han J T, Jiao S H, Cao R G, Wang H L, Li Q. Elemental selenium enables enhanced water oxidation electrocatalysis of NiFe layered double hydroxides[J]. Nanoscale, 2019,11:17376-17383. doi: 10.1039/C9NR06169J

    20. [20]

      Chen S, Yu C, Cao Z F, Huang X P, Wang S, Zhong H. Trimetallic NiFeCr-LDH/MoS2 composites as novel electrocatalyst for OER[J]. Int. J. Hydrog. Energy, 2021,46:7037-7046. doi: 10.1016/j.ijhydene.2020.11.249

    21. [21]

      Sahu N, Das J K, Behera J N. NiSe2 nanoparticles encapsulated in N-doped carbon matrix derived from a one-dimensional Ni-MOF: An efficient and sustained electrocatalyst for hydrogen evolution reaction[J]. Inorg. Chem., 2022,61:2835-2845. doi: 10.1021/acs.inorgchem.1c03323

    22. [22]

      Deng S J, Yang F, Zhang Q H, Zhong Y, Zeng Y X, Lin S W, Wang X L, Lu X H, Wang C Z, Gu L, Xia X H, Tu J P. Phase modulation of (1T-2H)-MoSe2/TiC-C shell/core arrays via nitrogen doping for highly efficient hydrogen evolution reaction[J]. Adv. Mater., 2018,301802223. doi: 10.1002/adma.201802223

    23. [23]

      Li Q Q, Wang X Q, Yang N N, He F, Yang Y F, Wu B H, Chu J, Zh ou, A N, Xiong S X. Hydrangea-like NiCo-based bimetal-organic frameworks, and their pros and cons as supercapacitor electrode materials in aqueous electrolytes[J]. Z. Anorg. Allg. Chem., 2019,645:1022-1030. doi: 10.1002/zaac.201900035

    24. [24]

      Zhang T T, Cai Y F, Lou Y B, Chen J X. 1T-2H MoSe2 modified MAPbI 3 for effective photocatalytic hydrogen evolution[J]. J. Alloy. Compd., 2022,893162329. doi: 10.1016/j.jallcom.2021.162329

    25. [25]

      Li W X, Fang W, Wu C, Dinh K N, Ren H, Zhao L, Liu C T, Yan Q Y. Bimetal-MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction[J]. J. Mater. Chem. A, 2020,8:3658-3666. doi: 10.1039/C9TA13473E

    26. [26]

      Cheng C C, Cheng P Y, Huang C L, Raja D S, Wu Y J, Lu S Y. Gold nanocrystal decorated trimetallic metal organic frameworks as high performance electrocatalysts for oxygen evolution reaction[J]. Appl. Catal. B-Environ., 2021,286119916. doi: 10.1016/j.apcatb.2021.119916

    27. [27]

      Upadhyay S, Pandey O P. Effect of Se content on the oxygen evolution reaction activity and capacitive performance of MoSe2 nano-flakes[J]. Electrochim. Acta, 2022,412140109. doi: 10.1016/j.electacta.2022.140109

    28. [28]

      Wu J, Yu Z J, Zhang Y Y, Niu S Q, Zhao J Y, Li S W, Xu P. Under-standing the effect of second metal on CoM (M=Ni, Cu, Zn) metalorganic frameworks for electrocatalytic oxygen evolution reaction[J]. Small, 2021,172105150. doi: 10.1002/smll.202105150

    29. [29]

      Chen J S, Li H, Chen S M, Fei J Y, Liu C, Yu Z X, Shin K, Liu Z W, Song L, Henkelman G, Wei L, Chen Y. Co-Fe-Cr (oxy) hydroxides as efficient oxygen evolution reaction catalysts[J]. Adv. Energy Mater, 2021,112003412. doi: 10.1002/aenm.202003412

    30. [30]

      Xin Y, Shen K, Guo T T, Chen L Y, Li Y W. Coupling hydrazine oxidation with seawater electrolysis for energy-saving hydrogen production over bifunctional CoNC nanoarray electrocatalysts[J]. Small, 2023,192300019. doi: 10.1002/smll.202300019

    31. [31]

      Shi F, Wang Z S, Zhu K Y, Zhu X F, Yang W S. Enhancing activity and stability of Co-MOF-74 for oxygen evolution reaction by wrapping polydopamine[J]. Electrochim. Acta, 2022,416140293. doi: 10.1016/j.electacta.2022.140293

    32. [32]

      Hu L, Hu Y W, Liu R, Mao Y C, Balogun M S, Tong Y X. Co-based MOF-derived Co/CoN/Co2P ternary composite embedded in N-and P-doped carbon as bifunctional nanocatalysts for efficient overall water splitting[J]. Int. J. Hydrog. Energy, 2019,44:11402-11410. doi: 10.1016/j.ijhydene.2019.03.157

    33. [33]

      Lv D M, Su S B, Zhang S F, Cai D D. Heterostructured ultrafine metal oxides nanoparticles anchored on Co-MOF nanosheets obtained by partial pyrolysis for promoted oxygen evolution reaction[J]. J. Alloy. Compd., 2022,912165143. doi: 10.1016/j.jallcom.2022.165143

    34. [34]

      Zhang W J, Li F, Fu Z N, Dai S, Pan F H K, Li J X, Zhou L H. Co-MOF Nanosheets etched by FeCl2 solution for enhanced electrocatalytic oxygen evolution[J]. Energy Fuels, 2022,36:4524-4531. doi: 10.1021/acs.energyfuels.2c00417

    35. [35]

      Li T M, Hu B Q, Han J H, Lu W T, Yu F, Li B. Highly effective OER electrocatalysts generated from a two-dimensional metal-organic framework including a sulfur-containing linker without doping[J]. Inorg Chem., 2022,61:7051-7059. doi: 10.1021/acs.inorgchem.2c00493

    36. [36]

      Wang H, Zhang X D, Yin F X, Chu W Y, Chen B H. Coordinately unsaturated metal-organic framework as an unpyrolyzed bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. J. Mater. Chem. A, 2020,8:22111-22123. doi: 10.1039/D0TA04331A

    37. [37]

      Wang Y R, Wang A N, Xue Z Z, Wang L, Li X Y, Wang G M. Ultrathin metal-organic framework nanosheet arrays and derived self-supported electrodes for overall water splitting[J]. J. Mater. Chem. A, 2021,9:22597-22602. doi: 10.1039/D1TA06360J

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    9. [9]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    10. [10]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    11. [11]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    12. [12]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    15. [15]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    16. [16]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(5)
  • Abstract views(697)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return