Citation: Xingxing SHENG, Feng XIAO, Jinbin LÜ. Luminescence characteristics and device applications of Cr3+-doped Ca4HfGe3O12 broadband near-infrared phosphors[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 345-352. doi: 10.11862/CJIC.20230260 shu

Luminescence characteristics and device applications of Cr3+-doped Ca4HfGe3O12 broadband near-infrared phosphors

  • Corresponding author: Xingxing SHENG, 1531352712@qq.com
  • Received Date: 10 July 2023
    Revised Date: 17 November 2023

Figures(7)

  • Near-infrared phosphor has shown an important application prospect in the fields of living organism imaging. However, the near-infrared phosphor for organism imaging has some bottleneck problems such as a lack of variety and poor thermal stability. Broadband near-infrared Ca4HfGe3O12xCr3+ (0≤x≤0.09) phosphors were synthesized by the solid phase method. X-ray diffraction and energy spectrum analysis showed that Cr3+ ions successfully entered the Ca4HfGe3O12 crystal lattice. Upon 469 nm excitation, Ca4HfGe3O12xCr3+ phosphors presented a width emission band covering 690-1 200 nm (strongest peak of 825 nm for 4T2-4A2, bandwidth of 141 nm) with a fluorescence quantum efficiency of 33.63% (x=0.03), which exhibited good thermal stability, 60.5% of room temperature intensity at 400 K. The excitation peak shape and lifetime decay behavior results showed that Cr3+ occupies only one cation sites in the matrix. In addition, the self-made near-infrared phosphor conversion device was used to illuminate the palm of the human hand and the fruit shielded by the 700 nm filter, and the venous vessels and the shelter-fruit outline were clearly observed.
  • 加载中
    1. [1]

      Jin G Q, Chau C V, Arambula J F, Gao S, Sessler J L, Zhang J L. Lanthanide porphyrinoids as molecular theranostics[J]. Chem. Soc. Rev., 2022,51:6177-6209. doi: 10.1039/D2CS00275B

    2. [2]

      HE X G, HUANG D C, SONG L P, LIANG S S, ZHU H M. Near-infrared photoluminescence properties of NaAlP2O7∶Cr3+ phosphor[J]. Chinese J. Lumin., 2022,43(9):1380-1389.

    3. [3]

      Zheng L W, Kuang J L, Shen J X, Wu H, Luo Y S, Pan G H, Hao Z D, Zhang L L, Zhang J H. Spectral broadening in Cr3+-doped Sr0.92Mg0.91Al10.1O17 NIR phosphor realized by multi-crystallographic site occupation[J]. ACS Appl. Opt. Mater., 2023,1:1150-1155. doi: 10.1021/acsaom.3c00086

    4. [4]

      Sojka M, Zhong J Y, Brgoch J. Developing broadband Cr3+-substituted phosphor-converted near-infrared light sources[J]. ACS Appl. Opt. Mater., 2023,1:1138-1149. doi: 10.1021/acsaom.3c00058

    5. [5]

      WANG C J, QIAO X S, FAN X P. Research progress on blue LED excited Cr3+ doped phosphors with broad-band near-infrared luminescence[J]. Chinese J. Lumin., 2022,43(12):1855-1870. doi: 10.37188/CJL.20220271

    6. [6]

      Zhang L S, Li C J, Zhong J Y, Wen J, Zhao W R. Thermally robust broadband near-infrared luminescence in the NaGaP2O7∶Cr3+ phosphor[J]. ACS Appl. Opt. Mater., 2023,1:85-93. doi: 10.1021/acsaom.2c00011

    7. [7]

      Yan Y, Shang M M, Huang S, Wang Y N, Sun Y X, Dang P P, Lin J. Photoluminescence properties of AScSi2O6∶Cr3+ (A=Na and Li) phosphors with high efficiency and thermal stability for near-infrared phosphor-converted light-emitting diode light sources[J]. ACS Appl. Mater. Interfaces, 2022,14(6):8179-8190. doi: 10.1021/acsami.1c23940

    8. [8]

      Ning Y Y, Zhu M L, Zhang J L. Near-infrared (NIR) lanthanide molecular probes for bioimaging and biosensing[J]. Coord. Chem. Rev., 2019,399213028. doi: 10.1016/j.ccr.2019.213028

    9. [9]

      Zhao F Y, Song Z, Liu Q L. Advances in chromium-activated phosphors for near-infrared light sources[J]. Laser Photon. Rev., 20222200380.

    10. [10]

      Miao S H, Liang Y J, Zhang Y, Chen D X, Wang X J. Broadband short-wave infrared light-emitting diodes based on Cr3+-doped LiScGeO4 phosphor[J]. ACS Appl. Mater. Interfaces, 2021,13:36011-36019. doi: 10.1021/acsami.1c10490

    11. [11]

      Xiao Y, Xiao W G, Wu D, Guan L Q, Luo M, Sun L D. An extra-broadband VIS-NIR emitting phosphor toward multifunctional LED applications[J]. Adv. Funct. Mater., 2022,322109618. doi: 10.1002/adfm.202109618

    12. [12]

      Lin Q M, Wang Q, Liao M, Xiong M M, Feng X, Zhang X, Dong H F, Zhu D Y, Wu F G, Mu Z F. Trivalent chromium ions doped fluorides with both broad emission bandwidth and excellent luminescence thermal stability[J]. ACS Appl. Mater. Interfaces, 2021,13:18274-18282. doi: 10.1021/acsami.1c01417

    13. [13]

      Wu Y L, Li Y, Qin X X, Chen R C, Wu D K, Liu S J, Qiu J R. Dual mode NIR long persistent phosphorescence and NIR-to-NIR stokes luminescence in La3Ga5GeO14∶Cr3+, Nd3+ phosphor[J]. J. Alloy. Compd., 2015,649:62-66. doi: 10.1016/j.jallcom.2015.05.037

    14. [14]

      Fang M H, Huang P Y, Bao Z, Majewska N, Lesniewski T, Mahlik S, Grinberg M, Leniec G, Kaczmarek S M, Yang C W, Lu K M, Sheu H S, Liu R S. Penetrating biological tissue using light-emitting diodes with a highly efficient near-infrared ScBO3∶Cr3+ phosphor[J]. Chem. Mater., 2020,32:2166-2171. doi: 10.1021/acs.chemmater.0c00101

    15. [15]

      Jiang L P, Jiang X, Zhang L L, Liu Q S, Mi X Y, Yu Z, Lv G C, Su Y J. Broadband near-infrared luminescence in garnet Y3Ga3MgSiO12∶Cr3+ phosphors[J]. Inorg. Chem., 2023,62:4220-4226. doi: 10.1021/acs.inorgchem.2c04319

    16. [16]

      Xiang J M, Zheng J M, Zhao X Q, Zhou X, Chen C H, Jin M K, Guo C F. Synthesis of broadband NIR garnet phosphor Ca4ZrGe3O12∶Cr3+, Yb3+ for NIR pc-LED applications[J]. Mater. Chem. Front., 2022,6:440-449. doi: 10.1039/D1QM01540K

    17. [17]

      Li C J, Zhong J Y. Efficient and thermally robust broadband near-infrared emission in a garnet Ca3MgHfGe3O12∶Cr3+ phosphor[J]. Adv. Opt. Mater., 2023,112202323. doi: 10.1002/adom.202202323

    18. [18]

      Nie W D, Yao L Q, Chen G, Wu S H, Liao Z J, Han L, Ye X Y. A novel Cr3+-doped Lu2CaMg2Si3O12 garnet phosphor with broadband emission for near-infrared applications[J]. Dalton Trans., 2021,50:8446-8456. doi: 10.1039/D1DT01195B

    19. [19]

      Li C J, Zhong J Y. Highly efficient broadband near-infrared luminescence with zero-thermal-quenching in garnet Y3In2Ga3O12∶Cr3+ phosphors[J]. Chem. Mater., 2022,34:8418-8426. doi: 10.1021/acs.chemmater.2c02174

    20. [20]

      Piao S Q, Wang Y C, Zhang J S, Zhang X Z, Wu D Y, Cao Y Z, Li X P, Chen B J. A tunable blue-cyan dual emission phosphor in Ca4-xLu2xHf1-xGe3O12∶Bi3+ via forming segregation structure for WLEDs[J]. J. Am. Ceram. Soc., 2022,105:7522-7534. doi: 10.1111/jace.18708

    21. [21]

      Liao Z R, Zhong J Y, Li C J, Jiang H, Zhao W R. Understanding the broadband near-infrared luminescence in a highly distorted garnet Ca4HfGe3O12∶Cr3+ phosphor[J]. Phys. Chem. Chem. Phys., 2023,25:15452-15462. doi: 10.1039/D3CP01547E

    22. [22]

      Bai B, Dang P P, Huang D Y, Lian H Z, Lin J. Broadband near-infrared emitting Ca2LuScGa2Ge2O12∶Cr3+ phosphors: Luminescence properties and application in light-emitting diodes[J]. Inorg. Chem., 2020,59:13481-13488. doi: 10.1021/acs.inorgchem.0c01890

    23. [23]

      Dai P P, Liu L, Xiang M. Remotely control Eu2+ emissions by modulating structural ordering of PO4 anion-groups in (Sr3-xCax)Ce(PO4)3∶Eu2+ phosphors[J]. Mater. Res. Bull., 2021,136111157. doi: 10.1016/j.materresbull.2020.111157

    24. [24]

      Qiao J W, Zhao J, Liu Q L, Xia Z G. Recent advances in solid-state LED phosphors with thermally stable luminescence[J]. J. Rare Earth, 2019,37:565-572. doi: 10.1016/j.jre.2018.11.001

    25. [25]

      Mao N, Liu S Q, Song Z, Yu Yi, Liu Q L. A broadband near-infrared phosphor Ca3Y2Ge3O12∶Cr3+ with garnet structure[J]. J. Alloy. Compd., 2021,863158699. doi: 10.1016/j.jallcom.2021.158699

    26. [26]

      Mao M Q, Zhou T L, Zeng H T, Wang L, Huang F, Tang X Y, Xie R J. Broadband near-infrared (NIR) emission realized by the crystal-field engineering of Y3-xCaxAl5-xSixO12∶Cr3+ (x=0-2.0) garnet phosphors[J]. J. Mater. Chem. C, 2020,8:1981-1988. doi: 10.1039/C9TC05775G

  • 加载中
    1. [1]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    2. [2]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    3. [3]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    4. [4]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    5. [5]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    6. [6]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    7. [7]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    8. [8]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    9. [9]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    10. [10]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    11. [11]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    12. [12]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    13. [13]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    14. [14]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    15. [15]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    16. [16]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    17. [17]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    18. [18]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    19. [19]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

Metrics
  • PDF Downloads(0)
  • Abstract views(962)
  • HTML views(204)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return