Advances in non-metallic doping of transition metal electrocatalysts for overall water splitting
- Corresponding author: Xin LI, lixin@hit.edu.cn
Citation:
Yongzheng ZHANG, Xu GUO, Xinyue SONG, Xin LI. Advances in non-metallic doping of transition metal electrocatalysts for overall water splitting[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(2): 289-306.
doi:
10.11862/CJIC.20230121
Xie X H, Du L, Yan L T, Park S, Qiu Y, Sokolowski J, Wang W, Shao Y Y. Oxygen evolution reaction in alkaline environment: Material challenges and solutions[J]. Adv. Funct. Mater., 2022,32(21)2110036. doi: 10.1002/adfm.202110036
Yu Z Y, Duan Y, Feng X Y, Yu X X, Gao M R, Yu S H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects[J]. Adv. Mater., 2021,33(31)2007100. doi: 10.1002/adma.202007100
Ma Y H, Leng D F, Zhang X M, Fu J J, Pi C R, Zheng Y, Gao B, Li X G, Li N, Chu P K, Luo Y S, Huo K F. Enhanced activities in alkaline hydrogen and oxygen evolution reactions on MoS2 electrocatalysts by in-plane sulfur defects coupled with transition metal doping[J]. Small, 2022,18(39)2203173. doi: 10.1002/smll.202203173
Zhu J, Hu L S, Zhao P X, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem. Rev., 2020,120(2):851-918. doi: 10.1021/acs.chemrev.9b00248
Anantharaj S, Kundu S, Noda S. "The Fe effect": A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts[J]. Nano Energy, 2021,80105514. doi: 10.1016/j.nanoen.2020.105514
Fu Q, Han J C, Wang X J, Xu P, Yao T, Zhong J, Zhong W W, Liu S W, Gao T L, Zhang Z H, Xu L L, Song B. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis[J]. Adv. Mater., 2021,33(6)1907818. doi: 10.1002/adma.201907818
Ding H, Liu H F, Chu W S, Wu C Z, Xie Y. Structural transformation of heterogeneous materials for electrocatalytic oxygen evolution reaction[J]. Chem. Rev., 2021,121(21):13174-13212. doi: 10.1021/acs.chemrev.1c00234
Sun H M, Yan Z H, Liu F M, Xu W C, Cheng F Y, Chen J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Adv. Mater., 2019,32(3)1806326.
Zhang Y X, Sun L, Zhang L K, Li X W, Gu J L, Si H C, Wu L, Shi Y, Sun C, Zhang Y H. Highly porous oxygen-doped NiCoP immobilized in reduced graphene oxide for supercapacitive energy storage[J]. Compos. Part B: Eng., 2020,182107611. doi: 10.1016/j.compositesb.2019.107611
Liu C L, Zhang G, Yu L, Qu J H, Liu H J. Oxygen doping to optimize atomic hydrogen binding energy on NiCoP for highly efficient hydrogen evolution[J]. Small, 2018,14(22)1800421. doi: 10.1002/smll.201800421
Sun H, Min Y X, Yang W J, Lian Y B, Lin L, Feng K, Deng Z, Chen M Z, Zhong J, Xu L, Peng Y. Morphological and electronic tuning of Ni2P through iron doping toward highly efficient water splitting[J]. ACS Catal., 2019,9(10):8882-8892. doi: 10.1021/acscatal.9b02264
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017,355(6321)eaad4998. doi: 10.1126/science.aad4998
Zhao S Y, Berry G J, Li W Y, Guan G Q, Yang M N, Li J W, Lai F L, Corà F, Holt K, Brett D J. L., He G J. The role of phosphate group in doped cobalt molybdate: Improved electrocatalytic hydrogen evolution performance[J]. Adv. Sci., 2020,7(12)1903674. doi: 10.1002/advs.201903674
Lin J H, Yan Y T, Xu T X, Qu C Q, Li J, Cao J, Feng J C, Qi J L. S doped NiCo2O4 nanosheet arrays by Ar plasma: An efficient and bifunctional electrode for overall water splitting[J]. J. Colloid Interface Sci., 2020,560:34-39. doi: 10.1016/j.jcis.2019.10.056
Liu J N, Deng X Y, Zhu S, Zhao N Q, Sha J W, Ma L Y, He F. Porous oxygen-doped NiCoP nanoneedles for high performance hybrid supercapacitor[J]. Electrochim. Acta, 2021,368137528. doi: 10.1016/j.electacta.2020.137528
Sun J P, Hu X T, Huang Z D, Huang T X, Wang X K, Guo H L, Dai F N, Sun D F. Atomically thin defect-rich Ni-Se-S hybrid nanosheets as hydrogen evolution reaction electrocatalysts[J]. Nano Res., 2020,13(8):2056-2062. doi: 10.1007/s12274-020-2807-8
KOU X R, LI C Y, QI Y Y, ZHANG K, LUO J, LIU H L. Advances in the application of transition metal hybrid materials in electrolytic water[J]. Chem. Res., 2022,33(4):290-298.
WANG Z Q, LIU W H, GENG F X. Research progress on transition metal layered double hydroxide electrocatalysts[J]. Mater. China, 2017,36(9):659-666.
Zhong X, Shu C, Su X M, Wang W K, Gong J Y. Insight into improved oxygen evolution reaction on electronic modulation of phosphorus doped NiCo2O4[J]. Mater. Today Commun., 2022,31103708. doi: 10.1016/j.mtcomm.2022.103708
SONG N J, GUO M Y, NAN H X, YU J. Progress of transition metal-based catalysts for oxygen precipitation reactions[J]. Energy Storage Sci. Technol., 2021,10(6):1906-1917.
Li S S, Li E Z, An X W, Hao X G, Jiang Z Q, Guan G Q. Transition metal-based catalysts for electrochemical water splitting at high current density: Current status and perspectives[J]. Nanoscale, 2021,13(3):12788-12817.
Ray A, Sultana S, Paramanik L, Parida K M. Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting[J]. J. Mater. Chem. A, 2020,8(37):19196-19245. doi: 10.1039/D0TA05797E
Shen W, Qiao L, Ding J, Sui Y M. P and Se-codopants triggered basal plane active sites in NbS2 3D nanosheets toward electrocatalytic hydrogen evolution[J]. Appl. Surf. Sci., 2022,581152419. doi: 10.1016/j.apsusc.2022.152419
Wang J, Hu J, Liang C, Chang L M, Du Y C, Han X J, Sun J M, Xu P. Surface reconstruction of phosphorus-doped cobalt molybdate microarrays in electrochemical water splitting[J]. Chem. Eng. J., 2022,446137094. doi: 10.1016/j.cej.2022.137094
Wang Y, Zhu Y L, Zhao S L, She S X, Zhang F F, Chen Y, Williams T, Gengenbach T, Zu L H, Mao H Y, Zhou W, Shao Z P, Wang H T, Tang J, Zhao D Y, Selomulya C. Anion etching for accessing rapid and deep self-reconstruction of precatalysts for water oxidation[J]. Matter, 2020,3(6):2124-2137. doi: 10.1016/j.matt.2020.09.016
Jiang J, Zhang Y J, Zhu X J, Lu S, Long L L, Chen J J. Nanostructured metallic FeNi2S4 with reconstruction to generate FeNi-based oxide as a highly-efficient oxygen evolution electrocatalyst[J]. Nano Energy, 2021,81105619. doi: 10.1016/j.nanoen.2020.105619
Zhang Y Z, Song X Y, Guo X, Li X. Design of molybdenum phosphide @ nitrogen-doped nickel-cobalt phosphide heterostructures for boosting electrocatalytic overall water splitting[J]. J. Colloid Interface Sci., 2023,648:585-594. doi: 10.1016/j.jcis.2023.05.202
Selvam N C S, Du L J, Xia B Y, Yoo P J, You B. Reconstructed water oxidation electrocatalysts: The impact of surface dynamics on intrinsic activities[J]. Adv. Funct. Mater., 2021,31(12)2008190. doi: 10.1002/adfm.202008190
Chen H Y, Chen J X, He H, Chen X, Jia C G, Chen D, Liang J H, Yu D D, Yao X, Qin L S, Huang Y X, Wen Z H. Amorphous CoFeB nanosheets with plasmon-regulated dynamic active sites for electrocatalytic water oxidation[J]. Appl. Catal. B: Environ., 2023,323122187. doi: 10.1016/j.apcatb.2022.122187
Bergmann A, Martinez M E, Teschner D, Chernev P, Gliech M, Araújo J F, Reier T, Dau H, Strasser P. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution[J]. Nat. Commun., 2015,6(10)8625.
Jiang S, Pang M J, Liu R, Song J, Wang R W, Li N, Pan Q L, Yang H, He W X, Zhao J G. Enhancement of the capacitance of rich-mixed-valence Co-Ni bimetal phosphide by oxygen doping for advanced hybrid supercapacitors[J]. J. Alloy. Compd., 2022,895162451. doi: 10.1016/j.jallcom.2021.162451
Guo X, Yang N, Zhu Z Z, Zhang Y Z, Chen J, Qi J Y, Li X. Iron-cobalt phosphide nanoarrays grown on waste wool-derived carbon: An efficient electrocatalyst for degradation of tetracycline[J]. J. Environ. Chem. Eng., 2022,10(6)108788. doi: 10.1016/j.jece.2022.108788
Li Z, Lu X, Teng J, Zhou Y, Zhuang W. Nonmetal-doping of noble metal-based catalysts for electrocatalysis[J]. Nanoscale, 2021,13(26):11314-11324.
Wang J S, Zhang Z F, Song H R, Zhang B, Liu J, Shai X X, Miao L. Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution[J]. Adv. Funct. Mater., 2021,31(9)2008578. doi: 10.1002/adfm.202008578
Xu Q C, Jiang H, Duan X Z, Jiang Z, Hu Y J, Boettcher S W, Zhang W Y, Guo S J, Li C Z. Fluorination-enabled reconstruction of NiFe electrocatalysts for efficient water oxidation[J]. Nano. Lett., 2021,21(1):492-499. doi: 10.1021/acs.nanolett.0c03950
Liao H B, Sun Y M, Dai C C, Du Y H, Xi S B, Liu F, Yu L H, Yang Z Y, Hou Y L, Fisher A C, Li S Z, Xu Z C. An electron deficiency strategy for enhancing hydrogen evolution on CoP nano-electrocatalysts[J]. Nano Energy, 2018,50:273-280. doi: 10.1016/j.nanoen.2018.05.060
Qiu H J, Du P, Hu K L, Gao J J, Li H L, Liu P, Ina T, Ohara K, Ito Y, Chen M W. Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries[J]. Adv. Mater., 2019,31(19)1900843. doi: 10.1002/adma.201900843
Zhou Q W, Shen Z H, Zhu C, Li J C, Ding Z Y, Wang P, Pan F, Zhang Z, Ma H X, Wang S Y, Zhang H G. Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption[J]. Adv. Mater., 2018,30(27)1800140. doi: 10.1002/adma.201800140
Men Y N, Li P, Yang F L, Cheng G Z, Chen S L, Luo W. Nitrogen-doped CoP as robust electrocatalyst for high-efficiency pH-universal hydrogen evolution reaction[J]. Appl. Catal. B: Environ., 2019,253:21-27. doi: 10.1016/j.apcatb.2019.04.038
Liang K, Pakhira S, Yang Z Z, Nijamudheen A, Ju L C, Wang M Y, Aguirre V C I, Sterbinsky G E, Du Y G, Feng Z X, Mendoza C J L, Yang Y. S-doped MoP nanoporous layer toward high-efficiency hydrogen evolution in pH-universal electrolyte[J]. ACS Catal., 2019,9(1):651-659. doi: 10.1021/acscatal.8b04291
Sun W, Sun J, Du L, Du C Y, Gao Y Z, Yin G P. Synthesis of nitrogen-doped niobium dioxide and its co-catalytic effect towards the electrocatalysis of oxygen reduction on platinum[J]. Electrochim. Acta, 2016,195:166-174. doi: 10.1016/j.electacta.2016.02.122
Lu M J, Li L, Chen D, Li J Z, Klyui N I, Han W. MOF-derived nitrogen-doped CoO@CoP arrays as bifunctional electrocatalysts for efficient overall water splitting[J]. Electrochim. Acta, 2020,330135210. doi: 10.1016/j.electacta.2019.135210
Yang H, Li S X, Yu H W, Zheng F Y, Lin L X, Chen J, Li Y H, Lin Y. In situ construction of hollow carbon spheres with N, Co, and Fe co-doping as electrochemical sensors for simultaneous determination of dihydroxybenzene isomers[J]. Nanoscale, 2019,11(18):8950-8958. doi: 10.1039/C9NR01146C
Bhanja P, Kim Y, Paul B, Kaneti Y V, Alothman A A, Bhaumik A, Yamauchi Y. Microporous nickel phosphonate derived heteroatom doped nickel oxide and nickel phosphide: Efficient electrocatalysts for oxygen evolution reaction[J]. Chem. Eng. J., 2021,405126803. doi: 10.1016/j.cej.2020.126803
Palm I, Kibena P E, Mooste M, Kozlova J, Käärik M, Kikas A, Treshchalov A, Leis J, Kisand V, Tamm A, Holdcroft S, Atanassov P, Tammeveski K. Nitrogen and phosphorus dual-doped silicon carbide-derived carbon/carbon nanotube composite for the anion-exchange membrane fuel cell cathode[J]. ACS Appl. Energy Mater., 2022,5(3):2949-2958. doi: 10.1021/acsaem.1c03627
Cui X Z, Meng L, Zhang X H, Wang X G, Shi J L. Heterogeneous atoms-doped titanium carbide as a precious metal-free electrocatalyst for oxygen reduction reaction[J]. Electrochim. Acta, 2019,295:384-392. doi: 10.1016/j.electacta.2018.10.169
Hao Q Y, Li S Y, Liu H, Mao J, Li Y, Liu C, Zhang J, Tang C C. Dual tuning of nickel sulfide nanoflake array electrocatalyst through nitrogen doping and carbon coating for efficient and stable water splitting[J]. Catal. Sci. Technol., 2019,9(12):3099-3108. doi: 10.1039/C9CY00688E
Xie W W, Yu T W, Ou Z Q, Zhang J L, Li R C, Song S Q, Wang Y. Self-supporting clusters constituted of nitrogen-doped CoMoO4 nanosheets for efficiently catalyzing the hydrogen evolution reaction in alkaline media[J]. ACS Sustain. Chem. Eng., 2020,8(24):9070-9078. doi: 10.1021/acssuschemeng.0c02283
Nayak A K, Enhtuwshin E, Kim S J, Han H. Facile Synthesis of N-doped WS2 nanosheets as an efficient and stable electrocatalyst for hydrogen evolution reaction in acidic media[J]. Catalysts, 2020,10(11)1238. doi: 10.3390/catal10111238
Chen X, Qiu Z J, Xing H L, Fei S X, Ma L B. Tertiary-amine-assisted synthesis of hierarchical porous nitrogen-incorporated cobalt-iron (oxy)hydroxide nanosheets for improved oxygen evolution reaction[J]. ACS Appl. Energy Mater., 2021,4(9):8866-8874. doi: 10.1021/acsaem.1c01030
Bolar S, Shit S, Murmu N C, Kuila T. Doping-assisted phase changing effect on MoS2 towards hydrogen evolution reaction in acidic and alkaline pH[J]. ChemElectroChem, 2020,7(1):336-346. doi: 10.1002/celc.201901870
SU F M, ZHANG D, LIANG F. Progress in the preparation and modification of nanocatalytic materials by low-temperature plasma[J]. Appl. Chem., 2019,36(8):882-891.
Chen T L, Zhang R, Chen G L, Huang J, Chen W, Wang X Q, Chen D L, Li C R, Ostrikov K K. Plasma-doping-enhanced overall water splitting: Case study of NiCo hydroxide electrocatalyst[J]. Catal. Today, 2019,337:147-154. doi: 10.1016/j.cattod.2019.04.017
Nguyen V T, Yang T Y, Le P A, Yen P J, Chueh Y L, Wei K H. New simultaneous exfoliation and doping process for generating MX2 nanosheets for electrocatalytic hydrogen evolution reaction[J]. ACS Appl. Energy Mater., 2019,11(16):14786-14795. doi: 10.1021/acsami.9b01374
Yu H T, Li Y C, Li X H. Electrochemical preparation of N-doped cobalt oxide nanoparticles with high electrocatalytic activity for the oxygen reduction reaction[J]. Chem.-Eur. J., 2014,20(12):3457-3462. doi: 10.1002/chem.201303814
Ashraf M A, Yang Y F, Zhang D Q, Pham B T. Bifunctional and binder-free S-doped Ni-P nanospheres electrocatalyst fabricated by pulse electrochemical deposition method for overall water splitting[J]. J. Colloid Interface Sci., 2020,577:265-278. doi: 10.1016/j.jcis.2020.05.060
Liu J L, Zhu D D, Ling T, Vasileff A, Qiao S Z. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH[J]. Nano Energy, 2017,40:264-273. doi: 10.1016/j.nanoen.2017.08.031
Xu R R, Jiang T F, Fu Z, Cheng N Y, Zhang X X, Zhu K, Xue H G, Wang W J, Tian J Q, Chen P. Ion-exchange controlled surface engineering of cobalt phosphide nanowires for enhanced hydrogen evolution[J]. Nano Energy, 2020,78105347. doi: 10.1016/j.nanoen.2020.105347
Li S, Yang N, Liao L, Luo Y Z, Wang S Y, Cao F F, Zhou W, Huang D K, Chen H. Doping β-CoMoO4 nanoplates with phosphorus for efficient hydrogen evolution reaction in alkaline media[J]. ACS Appl. Energy Mater., 2018,10(43):37038-37045. doi: 10.1021/acsami.8b13266
Chang J F, Li K, Wu Z J, Ge J J, Liu C P, Xing W. Sulfur-doped nickel phosphide nanoplates arrays: A monolithic electrocatalyst for efficient hydrogen evolution reactions[J]. ACS Appl. Energy Mater., 2018,10(31):26303-26311. doi: 10.1021/acsami.8b08068
Xie W W, Huang J H, Huang L T, Geng S P, Song S Q, Tsiakaras P, Wang Y. Novel fluorine-doped cobalt molybdate nanosheets with enriched oxygen-vacancies for improved oxygen evolution reaction activity[J]. Appl. Catal. B: Environ., 2022,303120871. doi: 10.1016/j.apcatb.2021.120871
Park K, Kwon J, Jo S, Choi S, Enkhtuvshin E, Kim C, Lee D, Kim J, Sun S, Han H, Song T. Simultaneous electrical and defect engineering of nickel iron metal-organic-framework via co-doping of metalloid and non-metal elements for a highly efficient oxygen evolution reaction[J]. Chem. Eng. J., 2022,439135720. doi: 10.1016/j.cej.2022.135720
Anjum M A R, Lee M H, Lee J S. Boron- and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions[J]. ACS Catal., 2018,8(9):8296-8305. doi: 10.1021/acscatal.8b01794
Liu J L, Wang Z Y, Li J, Cao L J, Lu Z G, Zhu D D. Structure engineering of MoS2 via simultaneous oxygen and phosphorus incorporation for improved hydrogen evolution[J]. Small, 2020,16(4)1905738. doi: 10.1002/smll.201905738
Cui X, Chen Z G, Wang Z, Chen M H, Guo X H, Zhao Z G. Tuning sulfur doping for bifunctional electrocatalyst with selectivity between oxygen and hydrogen evolution[J]. ACS Appl. Energy Mater., 2018,1(11):5822-5829. doi: 10.1021/acsaem.8b01186
Zhang X Y, Zhu Y R, Chen Y, Dou S Y, Chen X Y, Dong B, Guo B Y, Liu D P, Liu C G, Chai Y M. Hydrogen evolution under large-current-density based on fluorine-doped cobalt-iron phosphides[J]. Chem. Eng. J., 2020,399125831. doi: 10.1016/j.cej.2020.125831
Liu Z M, Gao D Z, Hu L N, Liu H, Li Y, Xue Y M, Liu F, Zhang J, Tang C C. Boron-doped CoSe2 nanowires as high-efficient electrocatalyst for hydrogen evolution reaction[J]. Colloid Surf. A, 2022,646128903. doi: 10.1016/j.colsurfa.2022.128903
Zhang R, Huang J, Chen G L, Chen W, Song C S, Li C R, Ostrikov K. In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting[J]. Appl. Catal. B: Environ., 2019,254:414-423. doi: 10.1016/j.apcatb.2019.04.089
Qi J L, Wang H H, Lin J H, Li C, Si X Q, Cao J, Zhong Z X, Feng J C. Mn and S dual-doping of MOF-derived Co3O4 electrode array increases the efficiency of electrocatalytic generation of oxygen[J]. J. Colloid Interface Sci., 2019,557:28-33. doi: 10.1016/j.jcis.2019.09.009
Wei Y S, Zou P C, Yue Y C, Wang M S, Fu W Y, Si S, Wei L, Zhao Xi S, Hu G Z, Xin H L. One-pot synthesis of B/P-co doped Co-Mo dual-nanowafer electrocatalysts for overall water splitting[J]. ACS Appl. Energy Mater., 2021,13(17):20024-20033. doi: 10.1021/acsami.1c01341
Wang J J, Zhang L A, Ren Y M, Wang P. Fluorine-doped nickel oxyhydroxide as a robust electrocatalyst for oxygen evolution reaction[J]. Electrochim. Acta, 2023,437141475. doi: 10.1016/j.electacta.2022.141475
Luo H, Wang X X, Wan C B, Xie L, Song M H, Qian P. A theoretical study of Fe adsorbed on pure and nonmetal (N, F, P, S, Cl)-doped Ti3C2O2 for electrocatalytic nitrogen reduction[J]. Nanomaterials, 2022,12(7)1081. doi: 10.3390/nano12071081
Novak T G., Prakash O, Tiwari A P, Jeon S. Solution-phase phosphorus substitution for enhanced oxygen evolution reaction in Cu2WS4[J]. RSC Adv., 2019,9(1):234-239. doi: 10.1039/C8RA09261C
Chen W F, Muckerman J T, Fujita E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts[J]. Chem. Commun. (Camb), 2013,49(79):8896-8909. doi: 10.1039/c3cc44076a
Xiao Z H, Gan X R, Zhu T H, Lei D Y, Zhao H M, Wang P F. Activating the basal planes in 2H-MoTe2 monolayers by incorporating single-atom dispersed N or P for enhanced electrocatalytic overall water splitting[J]. Adv. Sustain. Syst., 2022,6(7)2100515. doi: 10.1002/adsu.202100515
Wan K, Luo J S, Zhang X, Subramanian P, Fransaer J. Sulfur-modified nickel selenide as an efficient electrocatalyst for the oxygen evolution reaction[J]. J. Energy Chem., 2021,62:198-203. doi: 10.1016/j.jechem.2021.03.013
Jin H Y, Liu X, Chen S M, Vasileff A, Li L Q, Jiao Y, Song L, Zheng Y, Qiao S Z. Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction[J]. ACS Energy Lett., 2019,4(4):805-810. doi: 10.1021/acsenergylett.9b00348
Yao N, Li P, Zhou Z, Meng R, Cheng G, Luo W. Nitrogen engineering on 3D dandelion-flower-like CoS2 for high-performance overall water splitting[J]. Small, 2019,15(31)1901993. doi: 10.1002/smll.201901993
Luo Q M, Zhao Y W, Qi Y Y, Xin H Q, Wang C, Chen G J, Sun J, Liu M X, Xu K W, Ma F. Plasma-assisted nitrogen doping in Ni-Co-P hollow nanocubes for efficient hydrogen evolution electrocatalysis[J]. Nanoscale, 2020,12(25):13708-13718. doi: 10.1039/D0NR01783C
Diao J X, Li X L, Wang S Y, Zhao Z J, Wang W T, Chen K, Chen X T, Chao T T, Yang Y. Promoting water splitting on arrayed molybdenum carbide nanosheets with electronic modulation[J]. J. Mater. Chem. A, 2021,9(37):21440-21447. doi: 10.1039/D1TA05710C
Guo Z, Pang Y Y, Xie H, He G J, Parkin I P, Chai G L. Phosphorus-doped CuCo2O4 oxide with partial amorphous phase as a robust electrocatalyst for the oxygen evolution reaction[J]. ChemElectroChem, 2021,8(1):135-141. doi: 10.1002/celc.202001312
Chen L, Ren W Q, Xu C X, Chen Q, Chen Y Y, Wang W, Xu W Y, Hou Z H. Oxygen vacancy assisted low-temperature synthesis of P-doped Co3O4 with enhanced activity towards oxygen evolution reaction[J]. J. Alloy. Compd., 2022,894162038. doi: 10.1016/j.jallcom.2021.162038
Xi W G, Yan G, Lang Z L, Ma Y Y, Tan H Q, Zhu H T, Wang Y H, Li Y G. Oxygen-doped nickel iron phosphide nanocube arrays grown on Ni foam for oxygen evolution electrocatalysis[J]. Small, 2018,14(42)1802204. doi: 10.1002/smll.201802204
Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan Bi C, Xie Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. J. Am. Chem. Soc., 2013,135(47):17881-17888. doi: 10.1021/ja408329q
Zhou G Y, Li M, Li Y L, Dong H, Sun D M, Liu X E, Xu L, Tian Z Q, Tang Y W. Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting[J]. Adv. Funct. Mater., 2020,30(7)1905252. doi: 10.1002/adfm.201905252
Wen Y, Qi J Y, Zhao D Q, Liu J H, Wei P C, Kang X, Li X. O doping hierarchical NiCoP/Ni2P hybrid with modulated electron density for efficient alkaline hydrogen evolution reaction[J]. Appl. Catal. B: Environ., 2021,293120196. doi: 10.1016/j.apcatb.2021.120196
Fan W, Wang D, Sun Z, Ling X Y, Liu T X. Graphene/graphene nanoribbon aerogels decorated with S-doped MoSe2 nanosheets as an efficient electrocatalyst for hydrogen evolution[J]. Inorg. Chem. Front., 2019,6(5):1209-1216. doi: 10.1039/C9QI00064J
Mai-Thi L N, Hoang T N V, Bui Q B. Novel sulfur-doped nickel cobalt phosphide nanosheet arrays on carbon cloth as an efficient electrocatalyst for water splitting[J]. Mater. Chem. Phys., 2021,270124746. doi: 10.1016/j.matchemphys.2021.124746
Sun T, Liu P, Zhang Y, Chen Z J, Zhang C, Guo X G, Ma C, Gao Y, Zhang S G. Boosting the electrochemical water splitting on Co3O4 through surface decoration of epitaxial S-doped CoO layers[J]. Chem. Eng. J., 2020,390124591. doi: 10.1016/j.cej.2020.124591
Li S S, Wang L, Su H, Hong A N, Wang Y X, Yang H J, Ge L, Song W Y, Liu J, Ma T Y, Bu X H, Feng P Y. Electron redistributed S-doped nickel iron phosphides derived from one-step phosphatization of MOFs for significantly boosting electrochemical water splitting[J]. Adv. Funct. Mater., 2022,32(23)2200733. doi: 10.1002/adfm.202200733
Cheng L, Huang H, Lin Z Y, Yang Y, Yuan Q, Hu L, Wang C L, Chen Q W. N and O multi-coordinated vanadium single atom with enhanced oxygen reduction activity[J]. J. Colloid Interface Sci., 2021,594:466-473. doi: 10.1016/j.jcis.2021.03.074
Chen Y Y, Zhang Y, Jiang W J, Zhang X, Dai ZH, Wan L J, Hu J S. Pomegranate-like N, P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution[J]. ACS Nano, 2016,10(9):8851-8860. doi: 10.1021/acsnano.6b04725
Maiti A, Srivastava S K. Sulphur edge and vacancy assisted nitrogen-phosphorus co-doped exfoliated tungsten disulfide: A superior electrocatalyst for hydrogen evolution reaction[J]. J. Mater. Chem. A, 2018,6(40):19712-19726. doi: 10.1039/C8TA06918B
Lv K L, Suo W Q, Shao M D, Zhu Y, Wang X P, Feng J J, Fang M W, Zhu Y. Nitrogen doped MoS2 and nitrogen doped carbon dots composite catalyst for electroreduction CO2 to CO with high Faradaic efficiency[J]. Nano Energy, 2019,63103834. doi: 10.1016/j.nanoen.2019.06.030
Naveen M H, Huang Y H, Bisalere K S, Seo K D, Park D S, Shim Y B. Enhanced electrocatalytic activities of in situ produced Pd/S/N-doped carbon in oxygen reduction and hydrogen evolution reactions[J]. ACS Appl. Energy Mater., 2021,4(1):575-585. doi: 10.1021/acsaem.0c02461
Wang J, Xuan H C, Meng L X, Yang J T, Yang J L, Liang X H, Li Y P, Han P D. Facile synthesis of N, S co-doped CoMoO4 nanosheets as high-efficiency electrocatalysts for hydrogen evolution reaction[J]. Ionics, 2022,28(10):4685-4695. doi: 10.1007/s11581-022-04707-z
Xu J Y, Ge L, Zhou Y J, Jiang G Y, Li L, Li Y C, Li Y S. Insights into N, P, S multi-doped Mo2C/C composites as highly efficient hydrogen evolution reaction catalysts[J]. Nanoscale Adv., 2020,2(8):3334-3340. doi: 10.1039/D0NA00335B
Tian S F, Tang Q. Activating transition metal dichalcogenide monolayers as efficient electrocatalysts for the oxygen reduction reaction via single atom doping[J]. J. Mater. Chem. C, 2021,9(18):6040-6050. doi: 10.1039/D1TC00668A
Wang Y H, Wang Fe, Fang Y, Zhu J F, Luo H J, Qi J, Wu W L. Self-assembled flower-like MnO2 grown on Fe-containing urea-formaldehyde resins based carbon as catalyst for oxygen reduction reaction in alkaline direct methanol fuel cells[J]. Appl. Surf. Sci., 2019,496143566. doi: 10.1016/j.apsusc.2019.143566
Xing Y Y, Li D, Li L H, Tong H M, Jiang D L, Shi W D. Accelerating water dissociation kinetic in Co9S8 electrocatalyst by Mn/N co-doping toward efficient alkaline hydrogen evolution[J]. Int. J. Hydrog. Energy, 2021,46(11):7989-8001. doi: 10.1016/j.ijhydene.2020.12.037
Duan J J, Chen S, Vasileff A, Qiao S Z. Anion and cation modulation in metal compounds for bifunctional overall water splitting[J]. ACS Nano, 2016,10(9):8738-8745. doi: 10.1021/acsnano.6b04252
Liu K L, Wang F M, He P, Shifa T A, Wang Z X, Cheng Z Z, Zhan X Y, He J. The role of active oxide species for electrochemical water oxidation on the surface of 3d-metal phosphides[J]. Adv. Energy Mater., 2018,8(15)1703290. doi: 10.1002/aenm.201703290
Ye Q, Liu J, Lin L, Sun M, Wang Y F, Cheng Y L. Fe and P dual-doped nickel carbonate hydroxide/carbon nanotube hybrid electrocatalysts for an efficient oxygen evolution reaction[J]. Nanoscale, 2022,14(17):6648-6655. doi: 10.1039/D2NR00184E
Huang Y C, Zhou W B, Kong W C, Chen L L, Lu X L, Cai H Q, Yuan Y R, Zhao L M, Jiang Y Y, Li H T, Wang L M, Wang L, Wang H, Zhang J W, Gu J, Fan Z J. Atomically interfacial engineering on molybdenum nitride quantum dots decorated N-doped graphene for high-rate and stable alkaline hydrogen production[J]. Adv. Sci., 2022,9(36)2204949. doi: 10.1002/advs.202204949
Wang C, Shang H Y, Wang Y, Li J, Guo SY, Guo J, Du Y K. A general MOF-intermediated synthesis of hollow CoFe-based trimetallic phosphides composed of ultrathin nanosheets for boosting water oxidation electrocatalysis[J]. Nanoscale, 2021,13(15):7279-7284. doi: 10.1039/D1NR00075F
Zhan Y X, Zhou X M, Nie H G, Xu X J, Zheng X N, Hou J J, Duan H, Huang S M, Yang Z. Designing Pd/O co-doped MoSx for boosting the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2019,7(26):15599-15606. doi: 10.1039/C9TA02997D
Chen Z J, Zheng R J, Graś M, Wei W, Lota G, Chen H, Ni B J. Tuning electronic property and surface reconstruction of amorphous iron borides via W-P co-doping for highly efficient oxygen evolution[J]. Appl. Catal. B: Environ., 2021,288120037. doi: 10.1016/j.apcatb.2021.120037
Ali U, Sohail K, Liu Y Q, Yu X D, Xing S X. Molybdenum and phosphorous dual-doped, transition-metal-based, free-standing electrode for overall water splitting[J]. ChemElectroChem, 2021,8(9):1612-1620. doi: 10.1002/celc.202100217
Dong Y H, Chen X B, Yu B, Zhang W Z, Zhu X B, Liu Z C. Engineering of P vacancies and phosphate on Fe-doped Ni2P nanosheet arrays for enhanced oxygen evolution[J]. J. Alloy. Compd., 2022,905164023. doi: 10.1016/j.jallcom.2022.164023
Zhang X X, Zhang X L, Qu G M, Wang Z H, Wei Y R, Yin J M, Xiang G T, Xu X J. Nickel-cobalt double oxides with rich oxygen vacancies by B-doping for asymmetric supercapacitors with high energy densities[J]. Appl. Surf. Sci., 2020,512145621. doi: 10.1016/j.apsusc.2020.145621
Chen Z L, Chen M, Yan X X, Jia H X, Fei B, Ha Y, Qing H L, Yang H Y, Liu M, Wu R B. Vacancy occupation-driven polymorphic transformation in cobalt ditelluride for boosted oxygen evolution reaction[J]. ACS Nano, 2020,14(6):6968-6979. doi: 10.1021/acsnano.0c01456
Choi K, Moon I K, Oh J. An efficient amplification strategy for N-doped NiCo2O4 with oxygen vacancies and partial Ni/Co-nitrides as a dual-function electrode for both supercapatteries and hydrogen electrocatalysis[J]. J. Mater. Chem. A, 2019,7(4):1468-1478. doi: 10.1039/C8TA07210H
Zhang Y Z, Zhu Z Z, Guo X, Qi J Y, Li X. Plasma-assisted seconds-level-impregnated preparation of bifunctional N-doped NiCoP with O vacancies enhancement: Driving efficient water splitting[J]. Chem. Eng. J., 2023,452139230. doi: 10.1016/j.cej.2022.139230
Wen Y, Qi J Y, Wei P C, Kang X, Li X. Design of Ni3N/Co2N heterojunctions for boosting electrocatalytic alkaline overall water splitting[J]. J. Mater. Chem. A, 2021,9(16):10260-10269. doi: 10.1039/D1TA00885D
Deng L Q, Zhang K, Shi D, Liu S F, Xu D Q, Shao Y L, Shen J X, Wu Y Z, Hao X P. Rational design of Schottky heterojunction with modulating surface electron density for high-performance overall water splitting[J]. Appl. Catal. B: Environ., 2021,299120660. doi: 10.1016/j.apcatb.2021.120660
Zhang G, Wang G, Liu Y, Liu H, Qu J, Li J. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting[J]. J. Am. Chem. Soc., 2016,138(44):14686-14693. doi: 10.1021/jacs.6b08491
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270