Citation: Yiqing KANG, Yin WANG, Yueyuan MIAO, Yanru WANG, Siyu WANG, Lijie ZHANG, Daohao LI. Efficient hydrogen evolution reaction activity induced by P-doped defective WS2 nanosheets[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 373-382. doi: 10.11862/CJIC.2023.208 shu

Efficient hydrogen evolution reaction activity induced by P-doped defective WS2 nanosheets

Figures(9)

  • Herein, tungsten disulfide (WS2) nanosheets were firstly prepared by ultrasonic stripping method. Subsequently, the mixture of WS2 nanosheets and P powder were treated by the Ar plasma, obtaining P-doped defective WS2 nanosheets (P-D-WS2 NSs). The as-prepared P-D-WS2 NSs samples exhibited higher catalytic activity for hydrogen evolution reaction (HER) than defective WS2 nanosheets and pure WS2 nanosheets, such as lower overpotential, smaller Tafel slope, and better durability. Density functional theory calculations showed that the P atoms and defective structures in WS2 regulated the electronic environment around the materials, optimizing the energy barrier of H+ adsorption and hydrogen formation kinetics performance, thus improving the HER electrocatalytic activity.
  • 加载中
    1. [1]

      Li Y G, Wang H L, Xie L M, Liang Y, Hong G Y, Dai H S, Dai H J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2011,133(19):7296-7299. doi: 10.1021/ja201269b

    2. [2]

      Tiwari A P, Kim D, Kim Y, Prakash O, Lee H. Highly qctive and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction[J]. Nano Energy, 2016,28:366-372. doi: 10.1016/j.nanoen.2016.08.065

    3. [3]

      Song J H, Zhu C Z, Xu B Z, Fu S F, Mark H E, Ye R F, Du D, Scott P B, Lin Y H. Bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoPx phase-dependent electrical conductivity and hydrogen atom adsorption energy for efficient overall water splitting[J]. Adv. Energy Mater., 2017,7(2)1601555. doi: 10.1002/aenm.201601555

    4. [4]

      Li Y H, Liu P F, Pan L F, Wang H F, Yang Z Z, Zheng L R, Zhao H J, Gu L, Yang H G. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water[J]. Nat. Commun., 2015,68064. doi: 10.1038/ncomms9064

    5. [5]

      Tang C, Zhong L, Zhang B, Wang H F, Zhang Q. 3D mesoporous van der Waals heterostructures for trifunctional energy electrocatalysis[J]. Adv. Mater., 2018,30(5)1705110. doi: 10.1002/adma.201705110

    6. [6]

      Yuan K, Zhuang X D, Fu H Y, Brunklaus G, Forster M, Chen Y W, Feng X L, Ullrich S. Two-dimensional core-shelled porous hybrids as highly efficient catalysts for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2016,55(24):6858-6863. doi: 10.1002/anie.201600850

    7. [7]

      Huang Y C, Sun Y H, Zheng X L, Toshihiro A, Brian P, Jier H, He X, Bian W, Sabrina Y, Nicholas W, Hu J, Ge J X, Pu N, Yan X X, Pan X Q, Zhang L J, Wei Y G, Gu J. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution[J]. Nat. Commun., 2019,10(1):1-11. doi: 10.1038/s41467-018-07882-8

    8. [8]

      Kim M, Anjum M A R, Lee M, Lee B J, Lee J S. Activating MoS2 basal plane with Ni2P nanoparticles for Pt-like hydrogen evolution reaction in acidic media[J]. Adv. Funct. Mater., 2019,29(10)1809151. doi: 10.1002/adfm.201809151

    9. [9]

      Guo Y N, Park T, Yi J W, Henzie J, Kim J, Wang Z L, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting[J]. Adv Mater., 2019,31(17)1807134. doi: 10.1002/adma.201807134

    10. [10]

      Pramoda K, Gupta U, Chhetri M, Bandyopadhyay A, Pati S K, Rao C N R. Nanocomposites of C3N4 with layers of MoS2 and nitrogenated RGO, obtained by covalent cross-linking: Synthesis, characterization, and HER activity[J]. ACS Appl. Mater. Interfaces, 2017,9(12):10664-10672. doi: 10.1021/acsami.7b00085

    11. [11]

      Sun Y, Alimohammadi F, Zhang D, Guo G S. Enabling colloidal synthesis of edge-oriented MoS2 with expanded interlayer spacing for enhanced HER catalysis[J]. Nano Lett., 2017,17(3):1963-1969. doi: 10.1021/acs.nanolett.6b05346

    12. [12]

      Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R H, Zhuang X D, Feng X L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity[J]. Angew. Chem. Int. Ed., 2016,55(23):6702-6707. doi: 10.1002/anie.201602237

    13. [13]

      Chua X J, Luxa J, Eng A Y S, Tan S M, Sofer Z, Pumera M. Negative electrocatalytic effects of p-doping niobium and tantalum on MoS2 and WS2 for the hydrogen evolution reaction and oxygen reduction reaction[J]. ACS Catal., 2016,6(9):5724-5734. doi: 10.1021/acscatal.6b01593

    14. [14]

      Duan J J, Chen S, Chambers B A, Andersson G G, Qiao S Z. 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes[J]. Adv. Mater., 2015,27(28):4234-4241. doi: 10.1002/adma.201501692

    15. [15]

      Cheng L, Huang W J, Gong Q G, Liu C H, Liu Z, Li Y G, Dai H J. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2014,53(30):7860-7863. doi: 10.1002/anie.201402315

    16. [16]

      Wang F, He P, Li Y, Shiafa T A, Deng Y, Liu K L, Wang Q S, Wang F, Wen Y, Wang Z X, Zhan X Y, Sun L F, He J. Interface engineered WxC@WS2 nanostructure for enhanced hydrogen evolution catalysis[J]. Adv. Funct. Mater., 2017,27(7)1605802. doi: 10.1002/adfm.201605802

    17. [17]

      An Y R, Fan X L, Luo Z F, Lau W M. Nanopolygons of monolayer MS2: Best morphology and size for HER catalysis[J]. Nano Lett., 2017,17(1):368-376. doi: 10.1021/acs.nanolett.6b04324

    18. [18]

      Tang K, Wang X F, Li Q, Yan C L. High edge selectivity of in situ electrochemical Pt deposition on edge-rich layered WS2 nanosheets[J]. Adv. Mater., 2018,30(7)1704779. doi: 10.1002/adma.201704779

    19. [19]

      Wang Q, Zhao Z L, Dong S, He D S, Lawrence M J, Han S B, Cai C, Xiang S H, Rodriguez P, Xiang B, Wang Z G, Liang Y Y, Gu M. Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction[J]. Nano Energy, 2018,53:458-467. doi: 10.1016/j.nanoen.2018.09.003

    20. [20]

      Zhang X, Zhou F, Zhang S, Liang Y Y, Wang R H. Engineering MoS2 basal planes for hydrogen evolution via synergistic ruthenium doping and nanocarbon hybridization[J]. Adv. Sci., 2019,6(10)1900090. doi: 10.1002/advs.201900090

    21. [21]

      Gu C, Hu S, Zheng X S, Gao M R, Zheng Y R, Shi L, Gao Q, Zheng X, Chu W S, Yao H B, Zhu J F, Yu S H. Synthesis of sub-2 nm iron-doped NiSe2 nanowires and their surface-confined oxidation for oxygen evolution catalysis[J]. Angew. Chem. Int. Ed., 2018,57(15):4020-4024. doi: 10.1002/anie.201800883

    22. [22]

      Qian X, Liu H, Yang J, Wang H, Huang J, Xu C. Co-Cu-WSx ball-in-ball nanospheres as high-performance Pt-free bifunctional catalysts in efficient dye-sensitized solar cells and alkaline hydrogen evolution[J]. J. Mater. Chem. A, 2019,7(11):6337-6347. doi: 10.1039/C8TA12558A

    23. [23]

      Kwak I H, Abbas H G, Kwon I S, Park Y C, Seo J, Cho M K, Ahn J P, Seo H W, Park J, Kang H S. Intercalation of cobaltocene into WS2 nanosheets for enhanced catalytic hydrogen evolution reaction[J]. J. Mater. Chem. A, 2019,7(14):8101-8106. doi: 10.1039/C9TA01238A

    24. [24]

      Xiong Q, Wang Y, Liu P F, Zheng L R, Wang G Z, Yang H G, Wong P K, Zhang H, Zhao H J. Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting[J]. Adv Mater., 2018,30(29)1801450. doi: 10.1002/adma.201801450

    25. [25]

      Xing Z C, Yang X R, Asiri A M, Sun X P. Three-dimensional structures of MoS2@Ni core/shell nanosheets array toward synergetic electrocatalytic water splitting[J]. ACS Appl. Mater. Interfaces, 2016,8(23):14521-14526. doi: 10.1021/acsami.6b02331

    26. [26]

      Li Y, Majewski M B, Islam S M, Hao S Q, Murthy A A, DisStefano J G, Haned E D, Xu Y B, Wolverton C, Kanatzidis M G, Chen X, Dravid V P. Morphological engineering of winged Au@MoS2 heterostructures for electrocatalytic hydrogen evolution[J]. Nano Lett., 2018,18(11):7104-7110. doi: 10.1021/acs.nanolett.8b03109

    27. [27]

      Amiinu I S, Pu Z, Liu X, Owusu K A, Monestel H G R, Boakye F O, Zhang H, Mu S C. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries[J]. Adv. Funct. Mater., 2017,27(44)1702300. doi: 10.1002/adfm.201702300

    28. [28]

      Yuan Z, Li J, Yang M, Fang Z, Jian J H, Yu D S, Chen X D, Dai L M. Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: dual modulation roles of directional interfacial charge transfer[J]. J. Am. Chem. Soc., 2019,141(12):4972-4979. doi: 10.1021/jacs.9b00154

    29. [29]

      Zong L, Li M, Li C. Bioinspired coupling of inorganic layered nanomaterials with marine polysaccharides for efficient aqueous exfoliation and smart actuating hybrids[J]. Adv. Mater., 2017,29(10)1604691. doi: 10.1002/adma.201604691

    30. [30]

      Yu S, Kim J, Yoon K R, Jung J W, Oh J, Kim I D. Rational design of efficient electrocatalysts for hydrogen evolution reaction: single layers of WS2 nanoplates anchored to hollow nitrogen-doped carbon nanofibers[J]. ACS Appl. Mater. Interfaces., 2015,7(51):28116-28121. doi: 10.1021/acsami.5b09447

    31. [31]

      Zhao X, Ma X, Sun J, Li D, Yang X. Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution[J]. ACS Nano, 2016,10(2):2159-2166. doi: 10.1021/acsnano.5b06653

    32. [32]

      Salvati Jr L, Makovsky L E, Stencel J M, Brown F R, Hercules D M. Surface spectroscopic study of tungsten-alumina catalysts using X-ray photoelectron, ion scattering, and Raman spectroscopies[J]. J. Phys. Chem., 1981,85(24):3700-3707. doi: 10.1021/j150624a035

    33. [33]

      Pelavin M, Hendrickson D N, Hollander J M, Jolly W L. Phosphorus 2p electron binding energies. correlation with extended hueckel charges[J]. J. Phys. Chem., 1970,74(5):1116-1121. doi: 10.1021/j100700a027

    34. [34]

      Morgan W E, Stec W J, Albridge R G. pi.-Bond feedback interpreted from the binding energy of the "2p" electrons of phosphorus[J]. Inorg. Chem., 1971,10(5):926-930. doi: 10.1021/ic50099a013

    35. [35]

      Jiang Y, Huang J B, Mao B G, An T Y, Wang J, Cao M H. Inside solid liquid interfaces: Understanding the influence of the electrical double layer on alkaline hydrogen evolution reaction[J]. Appl. Catal. B-Environ., 2021,293120220. doi: 10.1016/j.apcatb.2021.120220

    36. [36]

      ZHOU Q, LI X B, JIAO S Z. Mesoporous regulated Co9S8/Ni3S2 composite electrode materials and electrocatalytic hydrogen evolution performance[J]. Chinese J. Inorg. Chem., 2021,37(11):1970-1980. doi: 10.11862/CJIC.2021.223 

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    3. [3]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 100019-0. doi: 10.3866/PKU.WHXB202308052

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    9. [9]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    10. [10]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    11. [11]

      Wenruo NIHongpeng LIYun ZHANGYiran TIANJiehui RUIYingcheng TONGXiaolin PIZhenyan TANG . Research progress of ruthenium alloy catalysts in hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 23-44. doi: 10.11862/CJIC.20250188

    12. [12]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    13. [13]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    14. [14]

      Ruyan LiuZhenrui NiOlim RuzimuradovKhayit TurayevTao LiuLuo YuPanyong Kuang . Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100159-0. doi: 10.1016/j.actphy.2025.100159

    15. [15]

      Chengxiao ZhaoZhaolin LiDongfang WuXiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149

    16. [16]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    17. [17]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    18. [18]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    19. [19]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    20. [20]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

Metrics
  • PDF Downloads(2)
  • Abstract views(1569)
  • HTML views(154)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return