Citation: Jia-Wen WAN, Ling-Fang LONG, Dao-Yuan MA, Yun-Zheng LIU, Zi-Xiang WANG, Li-Bin XIA. Effect of MgF2 on the luminescence of Mn4+-doped germanate red phosphor[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2328-2338. doi: 10.11862/CJIC.2023.193 shu

Effect of MgF2 on the luminescence of Mn4+-doped germanate red phosphor

  • Corresponding author: Li-Bin XIA, tea_xia@126.com
  • Received Date: 20 May 2023
    Revised Date: 29 October 2023

Figures(7)

  • 3.5MgO·0.5MgF2·GeO2∶Mn4+ has been applied in the market as a red phosphor with excellent thermal stability and good luminescence performance. However, the unclear influence mechanism of MgF2 in the phosphor hinders further performance optimization and development. A series of Mn4+-activated germanate phosphors were prepared by the high-temperature solid-phase method. The variation regulation of the structure, morphology, and luminescence performance was investigated by comparing the addition of MgF2 and H3BO3 (flux). Then the luminescence influence role of MgF2 has been obtained. The study showed that the optimum sintering temperatures for the samples with MgF2, H3BO3, and without any co-solvent were 1 150, 1 250, and 1 350 ℃, respectively. The luminescence intensity at the above temperatures was also the optimum value, and the samples with MgF2 and H3BO3 exhibited a pure phase at the temperature, respectively. The crystallinity and dispersion of the phosphors were improved by adding MgF2 and H3BO3, and the positive influence of the MgF2 was better than that of the H3BO3. The Dq/B value of the phosphor with MgF2 was calculated to be 3.03, indicating Mn4+ is in an environment with a strong crystal field. The fluorescence lifetimes of the phosphors with MgF2 and H3BO3 were 0.93 and 0.75 ms, respectively. The addition of MgF2, on the one hand, plays a positive role as a co-solvent, which can be conducive to generating a pure phase and improving the crystallinity. The role is the same as the H3BO3. On the other hand, the F- ions originating from MgF2 were successfully doped into the crystal lattice confirmed by the XPS analysis, and then the crystal structure of Mg14Ge5(O, F)24 was achieved.
  • 加载中
    1. [1]

      Li Z Y, Zhang X H, Wu J, Guo R, Luo L, Xiong Y H, Wang L, Chen W. A novel inequivalent double-site substituted red phosphor Li4AlSbO6: Mn4+ with high color purity: Its structure, photoluminescence properties, and application in warm white LEDs[J]. J. Mater. Chem. C, 2021,9(38):13236-13246. doi: 10.1039/D1TC02541D

    2. [2]

      Wu J, Wang B, Liu Z Y, Zhang K, Zeng Q G. Mn4+-activated oxyfluoride K3TaOF6 red phosphor with intense zero phonon line for warm white light-emitting diodes[J]. RSC Adv., 2021,11(42):26120-26126. doi: 10.1039/D1RA05174A

    3. [3]

      LI S, GUO N, LIANG Q M, DENG H X. Red phosphors doped by Eu used in white LED[J]. Chinese J. Inorg. Chem., 2017,33(4):543-549. doi: 10.11862/CJIC.2017.044

    4. [4]

      Uheda K, Hirosaki N, Yamamoto H. Host lattice materials in the system Ca3N2-AlN-Si3N4 for white light emitting diode[J]. Phys. Status Solidi A-Appl. Mat., 2006,203(11):2712-2717. doi: 10.1002/pssa.200669576

    5. [5]

      Chen D Q, Zhou Y, Zhong J S. A review on Mn4+ activator in solids for warm white light-emitting diodes[J]. RSC Adv., 2016,6(89):86285-86296. doi: 10.1039/C6RA19584A

    6. [6]

      Liu Z, Yu M H, Liu J Q, Yu C Y, Xuan T T, Li H L. Electrospinning, optical properties and white LED applications of one-dimensional CaAl12O19: Mn4+ nanofiber phosphors[J]. Ceram. Int., 2017,43(7):5674-5679. doi: 10.1016/j.ceramint.2017.01.105

    7. [7]

      Zhong Y, Gai S J, Xia M, Gu S M, Zhang Y L, Wu X B, Wang J, Zhou N, Zhou Z. Enhancing quantum efficiency and tuning photoluminescence properties in far-red-emitting phosphor Ca14Ga10Zn6O35: Mn4+ based on chemical unit engineering[J]. Chem. Eng. J., 2019,374:381-391. doi: 10.1016/j.cej.2019.05.201

    8. [8]

      XIN X D, WEI H W, ZHAO W H, LIU Z S, LI W X, JIAO H, JING X P. Doping and replacing effects on the luminescent properties of SrAl12O19∶Mn4+ red phosphor[J]. Chinese J. Inorg. Chem., 2016,32(7):1199-1206. doi: 10.11862/CJIC.2016.169

    9. [9]

      Zhu H M, Lin C C, Luo W Q, Shu S T, Liu Z G, Liu Y S, Kong J T, Ma E, Cao Y G, Liu R S, Chen X Y. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes[J]. Nat. Commun., 2014,54312. doi: 10.1038/ncomms5312

    10. [10]

      Takahashi T, Adachi S. Synthesis of K2SiF6: Mn4+ red phosphor from silica glasses by wet chemical etching in HF/KMnO4 solution[J]. Electrochem. Solid State Lett., 2009,12(8):J69-J71. doi: 10.1149/1.3148270

    11. [11]

      Shi D X, Liang Z B, Zhang X, Zhou Q, Wang Z L, Wu M M, Ye Y Q. Synthesis, structure and photoluminescence properties of a novel Rb2NaAlF6: Mn4+ red phosphor for solid-state lighting[J]. J. Lumines., 2020,226117491. doi: 10.1016/j.jlumin.2020.117491

    12. [12]

      QU Q, ZHANG W R, HE L L, JI H P. Mn4+-doped red-emitting oxyfluoride phosphors with intense zero phonon line[J]. Chinese Journal of Luminescence, 2023,44(5):786-800.  

    13. [13]

      Ming H, Zhang J F, Liu L L, Peng J Q, Du F, Ye X Y, Yang Y M, Nie H P. A novel Cs2NbOF5: Mn4+ oxyfluoride red phosphor for light-emitting diode devices[J]. Dalton Trans., 2018,47(45):16048-16056. doi: 10.1039/C8DT02817F

    14. [14]

      Wang Q, Yang Z Y, Wang H Y, Chen Z K, Yang H L, Yang J, Wang Z L. Novel Mn4+-activated oxyfluoride Cs2NbOF5: Mn4+ red phosphor for warm white light-emitting diodes[J]. Opt. Mater., 2018,85:96-99. doi: 10.1016/j.optmat.2018.08.050

    15. [15]

      Kato H, Takeda Y, Kobayashi M, Kobayashi H, Kakihana M. Photoluminescence properties of layered perovskite-type strontium scandium oxyfluoride activated with Mn4+[J]. Front. Chem., 2018,6467. doi: 10.3389/fchem.2018.00467

    16. [16]

      Kemeny G, Haake C H. Activator center in magnesium fluorogermanate phosphors[J]. J. Chem. Phys., 1960,33(3):783-789. doi: 10.1063/1.1731262

    17. [17]

      Luke T. Temperature dependence of the emission of an improved manganese-activated magnesium germanate phosphor[J]. Journal of The Optical Society of America, 1950,40(9):579-583. doi: 10.1364/JOSA.40.000579

    18. [18]

      Omrane A, Ossler F, Aldén M, Svenson J, Pettersson J B C. Surface temperature of decomposing construction materials studied by laser-induced phosphorescence[J]. Fire Mater., 2005,29(1):39-51. doi: 10.1002/fam.876

    19. [19]

      Omrane A, Juhlin G, Ossler F, Aldén M. Temperature measurements of single droplets by use of laser-induced phosphorescence[J]. Appl. Optics, 2004,43(17):3523-3529. doi: 10.1364/AO.43.003523

    20. [20]

      Von Dreele R B, Bless P W, Kostiner E, Hughes R E. The crystal structure of magnesium germanate: A reformulation of Mg4GeO6 as Mg28Ge10O48[J]. J. Solid State Chem., 1970,2(4):612-618. doi: 10.1016/0022-4596(70)90058-7

    21. [21]

      Bless P W, Von Dreele R B, Kostiner E, Hughes R E. Anion and cation defect structure in magnesium fluorogermanate[J]. J. Solid State Chem., 1972,4(2):262-268. doi: 10.1016/0022-4596(72)90115-6

    22. [22]

      Okamoto S, Yamamoto H. Luminescent-efficiency improvement by alkaline-earth fluorides partially replacing MgO in 3.5MgO·0.5MgF2GeO2: Mn4+ deep-red phosphors for light emitting diodes[J]. J. Electrochem. Soc., 2010,157(3):J59-J63. doi: 10.1149/1.3276089

    23. [23]

      Yuan L L, Zhang X S, Xu J P, Sun J, Jin H, Liu X J, Li L L. Influence of Al3+ doping on the energy levels and thermal property of the 3.5MgO·0.5MgF2·GeO2: Mn4+ red-emitting phosphor[J]. Chin. Phys. B, 2015,24(8):553-557.

    24. [24]

      Ali A, Chepyga L M, Khanzada L S, Osvet A, Brabec C J, Batentschuk M. Effect of water vapor content during the solid state synthesis of manganese-doped magnesium fluoro-germanate phosphor on its chemistry and photoluminescent properties[J]. Opt. Mater., 2020,99109572. doi: 10.1016/j.optmat.2019.109572

    25. [25]

      Wang X S, Wang Z X, Song B Q, Jiang Q, Hou H L, Long L F, Xu L, Xia L B. Performance improvement of Sr4Al14O25: Mn4+ red emission phosphor via Na+ doping[J]. J. Alloy. Compd., 2023,937168346. doi: 10.1016/j.jallcom.2022.168346

    26. [26]

      ZHANG W, HE M T, QIAO X S, FAN X P. Research progress of Mn4+ activated typical LED red phosphors[J]. Chinese Journal of Luminescence, 2021,42(9):1345-1364.  

    27. [27]

      JI H P. Basic knowledge for understanding spectroscopic property of Mn4+ ion[J]. Chinese Journal of Luminescence, 2022,43(8):1175-1187.  

    28. [28]

      Liang S S, Li G G, Dang P P, Wei Y, Lian H Z, Lin J. Cation substitution induced adjustment on lattice structure and photoluminescence properties of Mg14Ge5O24: Mn4+: Optimized emission for w-LED and thermometry applications[J]. Adv. Opt. Mater., 2019,7(12)1900093.

    29. [29]

      Noh M, Yoon D H, Kim C H, Lee S J. Organic solvent-assisted synthesis of the K3SiF7: Mn4+ red phosphor with improved morphology and stability[J]. J. Mater. Chem. C, 2019,7(47):15014-15020.

    30. [30]

      Yang Z B, Wang Z J, Zheng M J, Wang X J, Cui J, Yao Y, Cao L W, Zhang M Y, Suo H, Li P L. Excitation selective thermal characteristics of Mg28Ge7.55-xGaxO32F15.04: Mn4+ and application in single/dual-mode optical thermometry[J]. Mater. Today Commun., 2021,28102660.

  • 加载中
    1. [1]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    2. [2]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    3. [3]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    4. [4]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    5. [5]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    6. [6]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    7. [7]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    8. [8]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    9. [9]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    10. [10]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    13. [13]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    14. [14]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    15. [15]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    16. [16]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    17. [17]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    18. [18]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    19. [19]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    20. [20]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

Metrics
  • PDF Downloads(3)
  • Abstract views(581)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return