Synthesis, characterization, and electrocatalytic hydrogen evolution of diiron dithiolato pentacarbonyl complexes bearing phosphine ligand
- Corresponding author: Xu-Feng LIU, nkxfliu@126.com
Citation:
Xu-Feng LIU, Bo XU, Hang XU, Yu-Long LI. Synthesis, characterization, and electrocatalytic hydrogen evolution of diiron dithiolato pentacarbonyl complexes bearing phosphine ligand[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(8): 1619-1627.
doi:
10.11862/CJIC.2023.117
Han Z J, Qiu F, Eisenberg R, Holland P L, Krauss T D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst[J]. Science, 2012,338:1321-1324. doi: 10.1126/science.1227775
Rauchfuss T B. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere[J]. Acc. Chem. Res., 2015,48:2107-2116. doi: 10.1021/acs.accounts.5b00177
Tard C, Pickett C J. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases[J]. Chem. Rev., 2009,109:2245-2274. doi: 10.1021/cr800542q
Li Y L, Rauchfuss T B. Synthesis of diiron? dithiolato carbonyl complexes[J]. Chem. Rev., 2014,116:7043-7077.
Schilter D, Camara J M, Huynh M T, Hammes-Schiffer S, Rauchfuss T B. Hydrogenase enzymes and their synthetic models: The role of metal hydrides[J]. Chem. Rev., 2016,116:8693-9749. doi: 10.1021/acs.chemrev.6b00180
Peters J W, Lanzilotta W N, Lemon B J, Seefeldt L C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium Pasteurianum to 1.8 angstrom resolution[J]. Science, 1998,282:1853-1858. doi: 10.1126/science.282.5395.1853
Nicolet Y, Piras C, Legrand P, Hatchikian C E, Fontecilla-Camps J C. Desulfovibrio Desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center[J]. Structure, 1999,7:13-23. doi: 10.1016/S0969-2126(99)80005-7
Fan H J, Hall M B. A capable bridging ligand for Fe-only hydrogenase: Density functional calculations of a low-energy route for heterolytic cleavage and formation of dihydrogen[J]. J. Am. Chem. Soc., 2001,123:3828-3829. doi: 10.1021/ja004120i
Lyon E J, Georgakaki I P, Reibenspies J H, Darensbourg M Y. Carbon monoxide and cyanide ligands in a classical organometallic complex model for Fe-only hydrogenase[J]. Angew. Chem. Int. Ed., 1999,38:3178-3180. doi: 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4
Li H X, Rauchfuss T B. Iron carbonyl sulfides, formaldehyde, and amines condense to give the proposed azadithiolate cofactor of the Fe-only hydrogenases[J]. J. Am. Chem. Soc., 2002,124:726-727. doi: 10.1021/ja016964n
Liu X F, Jiang Z Q, Jia Z J. Synthesis, characterization and crystal structures of tetrairon ethanedithiolate complexes containing bridging bidentate phosphine ligands[J]. Polyhedron, 2012,33:166-170. doi: 10.1016/j.poly.2011.11.032
Lawrence J D, Li H X, Rauchfuss T B, Bénard M, Rohmer M M. Diiron azadithiolates as models for the iron-only hydrogenase active site: Synthesis, structure, and stereoelectronics[J]. Angew. Chem. Int. Ed., 2001,40:1768-1771. doi: 10.1002/1521-3773(20010504)40:9<1768::AID-ANIE17680>3.0.CO;2-E
Mejia-Rodriguez R, Chong D, Reibenspies J H, Soriaga M P, Darensbourg M Y. The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: iron hydrogenase model complexes[J]. J. Am. Chem. Soc., 2004,126:12004-12014. doi: 10.1021/ja039394v
Li Z M, Xiao Z Y, Xu F F, Zeng X H, Liu X M. Enhancement in catalytic proton reduction by an internal base in a diiron pentacarbonyl complex: Its synthesis, characterization, inter-conversion and electrochemical investigation[J]. Dalton Trans., 2017,46:1864-1871. doi: 10.1039/C6DT04409C
Zhong W, Wu L, Jiang W D, Li Y L, Mookan N, Liu X M. Proton-coupled electron transfer in the reduction of diiron hexacarbonyl complexes and its enhancement on the electrocatalytic reduction of protons by a pendant basic group[J]. Dalton Trans., 2019,48:13711-13718. doi: 10.1039/C9DT02058F
Xiao Z Y, Zhong W, Liu X M. Recent developments in electrochemical investigations into iron carbonyl complexes relevant to the iron centres of hydrogenases[J]. Dalton Trans., 2022,51:40-47. doi: 10.1039/D1DT02705K
Orton G R F, Ringenberg M R, Hogarth G. Biomimics of [FeFe]-hydrogenases incorporating redox-active ligands: Ferrocene-bridged dithiolate complexes [Fe2(CO)6(μ-EC5H4FeC5H4E)] (E=S, Se)[J]. J. Organomet. Chem., 2022,978122472. doi: 10.1016/j.jorganchem.2022.122472
Orton G R F, Ghosh S, Alker L, Sarker J C, Pugh D, Richmond M G, Hartl F, Hogarth G. Biomimics of [FeFe]-hydrogenases incorporating redox-active ligands: Synthesis, redox properties and spectroelectrochemistry of diiron-dithiolate complexes with ferrocenyl-diphosphines as Fe4S4 surrogates[J]. Dalton Trans., 2022,51:9748-9769. doi: 10.1039/D2DT00419D
Yan L, Yang J, Lü S, Liu X F, Li Y L, Liu X H, Jiang Z Q. Phosphine-containing diiron propane-1, 2-dithiolate derivatives: Synthesis, spectroscopy, X-ray crystal structures, and electrochemistry[J]. Catal. Lett., 2021,151:1857-1867. doi: 10.1007/s10562-020-03450-2
Liu X F, Ma Z Y, Jin B, Wang D, Zhao P H. Substituent effects of tertiary phosphines on the structures and electrochemical performances of azadithiolato-bridged diiron model complexes of [FeFe]-hydrogenases[J]. Appl. Organomet. Chem., 2022,36e6751.
Lian M, He J, Yu X Y, Mu C, Liu X F, Li Y L, Jiang Z Q. Diiron ethanedithiolate complexes with acetate ester: Synthesis, characterization and electrochemical properties[J]. J. Organomet. Chem., 2018,870:90-96. doi: 10.1016/j.jorganchem.2018.06.023
Li P, Wang M, He C J, Li G H, Liu X Y, Chen C N, Å kermark B, Sun L C. Influence of tertiary phosphanes on the coordination configurations and electrochemical properties of iron hydrogenase model complexes: Crystal structures of [(μ-S2C3H6)Fe2(CO)6-nLn] (L=PMe2Ph, n=1, 2; PPh3, P(OEt)3, n=1)[J]. Eur. J. Inorg. Chem., 2005:2506-2513.
Yan L, Hu K, Liu X F, Li Y L, Liu X H, Jiang Z Q. Diiron ethane-1, 2-dithiolate complexes with 1, 2, 3-thiadiazole moiety: Synthesis, X-ray crystal structures, electrochemistry and fungicidal activity[J]. Appl. Organomet. Chem., 2021,35e6084.
Zhao P H, Hu M Y, Li J R, Ma Z Y, Wang Y Z, He J, Li Y L, Liu X F. Influence of dithiolate bridges on the structures and electrocatalytic performance of small bite-angle PNP-chelated diiron complexes Fe2(μ-xdt)(CO)4{κ2-(Ph2P)2NR} related to [FeFe]-hydrogenases[J]. Organometallics, 2019,38:385-394. doi: 10.1021/acs.organomet.8b00759
Gao W M, Ekström J, Liu J H, Chen C N, Eriksson L, Weng L H, Å kermark B, Sun L C. Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction[J]. Inorg. Chem., 2007,46:1981-1991. doi: 10.1021/ic0610278
LIU X F, XU B, XU H, LI Y L. Diiron butane-1, 2-dithiolate complexes with phosphine ligands: Preparation, crystal structures, and electrochemical catalytic performance[J]. Chinese J. Inorg. Chem., 2022,38(12):2521-2529.
Jin B, Tan X, Zhang X X, Wang Z Y, Qu Y P, He Y B, Hu T P, Zhao P H. Substituent effects in carbon-nanotube-supported diiron monophosphine complexes for hydrogen evolution reaction[J]. Electrochim. Acta, 2022,434141325. doi: 10.1016/j.electacta.2022.141325
Chen F Y, He J, Yu X Y, Wang Z, Mu C, Liu X F, Li Y L, Jiang Z Q, Wu H K. Electrocatalytic properties of diiron ethanedithiolate complexes containing benzoate ester[J]. Appl. Organomet. Chem., 2018,32e4549. doi: 10.1002/aoc.4549
Lin H M, Li J R, Mu C, Li A, Liu X F, Zhao P H, Li Y L, Jiang Z Q, Wu H K. Synthesis, characterization, and electrochemistry of monophosphine‐containing diiron propane‐1, 2‐dithiolate complexes related to the active site of [FeFe]‐hydrogenases[J]. Appl. Organomet. Chem., 2019,33e5196.
Hu M Y, Zhao P H, Li J R, Gu X L, Jing X B, Liu X F. Synthesis, structures, and electrocatalytic properties of phosphine-monodentate, -chelate, and -bridge diiron 2, 2-dimethylpropanedithiolate complexes related to [FeFe]-hydrogenases[J]. Appl. Organomet. Chem., 2020,34e5523.
Chong D, Georgakaki I P, Mejia-Rodriguez R, Sanabria-Chinchilla J, Soriaga M P, Darensbourg M Y. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships[J]. Dalton Trans., 2003:4158-4163.
Gloaguen F, Lawrence J D, Rauchfuss T B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate[J]. J. Am. Chem. Soc., 2001,123:9476-9477. doi: 10.1021/ja016516f
Vannucci A K, Wang S, Nichol G S, Lichtenberger D L, Evans D H, Glass R S. Electronic and geometric effects of phosphatriazaadamantane ligands on the catalytic activity of a [FeFe] hydrogenase inspired complex[J]. Dalton Trans., 2010,39:3050-3056. doi: 10.1039/B921067A
Liu T B, Wang M, Shi Z, Cui H G, Dong W B, Chen J S, Å kermark B, Sun L C. Synthesis, structures and electrochemical properties of nitro- and amino-functionalized diiron azadithiolates as active site models of Fe-only hydrogenases[J]. Chem.-Eur. J., 2004,10:4474-4479. doi: 10.1002/chem.200400004
Fourmond V, Jacques P A, Fontecave M, Artero M. H2 Evolution and molecular electrocatalysts: Determination of overpotentials and effect of homoconjugation[J]. Inorg. Chem., 2010,49:10338-10347. doi: 10.1021/ic101187v
Tatematsu R, Inomata T, Ozawa T, Masuda H. Electrocatalytic hydrogen production by a Nickel(Ⅱ) complex with a phosphinopyridyl ligand[J]. Angew. Chem. Int. Ed., 2016,55:5247-5250. doi: 10.1002/anie.201511621
Jingqi Ma , Huangjie Lu , Junpu Yang , Liangwei Yang , Jian-Qiang Wang , Xianlong Du , Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275
Xin Dong , Jing Liang , Zhijin Xu , Huajie Wu , Lei Wang , Shihai You , Junhua Luo , Lina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708
Xiuwen Xu , Quan Zhou , Yacong Wang , Yunjie He , Qiang Wang , Yuan Wang , Bing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Hong-Jin Liao , Zhu Zhuo , Qing Li , Yoshihito Shiota , Jonathan P. Hill , Katsuhiko Ariga , Zi-Xiu Lu , Lu-Yao Liu , Zi-Ang Nan , Wei Wang , You-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052
Xuying Yu , Jiarong Mi , Yulan Han , Cai Sun , Mingsheng Wang , Guocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233
Xin Dong , Tianqi Chen , Jing Liang , Lei Wang , Huajie Wu , Zhijin Xu , Junhua Luo , Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256
Yan-Jiang Li , Shu-Lei Chou , Yao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389
Yu Pang , Min Wang , Ning-Hua Yang , Min Xue , Yong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Mengjuan Sun , Muye Zhou , Yifang Xiao , Hailei Tang , Jinhua Chen , Ruitao Zhang , Chunjiayu Li , Qi Ya , Qian Chen , Jiasheng Tu , Qiyue Wang , Chunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110
ccomplex=1.0 mmol·L-1.
ccomplex=1.0 mmol·L-1.
ccomplex=1.0 mmol·L-1.
ccomplex=1.0 mmol·L-1.
ccomplex=1.0 mmol·L-1.