CoFe-P catalyst prepared by a facile electrodeposition for high-efficient oxygen evolution reaction
- Corresponding author: Xing-Cai WU, wuxingca@nju.edu.cn
Citation:
Zi-Ming SHENG, You-Rong TAO, Lu-Lu XU, Peng YANG, Wen-Xin WANG, Xing-Cai WU. CoFe-P catalyst prepared by a facile electrodeposition for high-efficient oxygen evolution reaction[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(7): 1325-1337.
doi:
10.11862/CJIC.2023.102
Shanmugam S, Sivanantham A, Matsunaga M, Simon U, Osaka T. Metal phosphide nanoparticles embedded in carbon as efficient electrocatalyst for oxygen evolution reaction[J]. Electrochim. Acta, 2019,297:749-754. doi: 10.1016/j.electacta.2018.12.028
Wu L B, Zhang F H, Song S W, Ning M H, Zhu Q, Zhou J Q, Gao G H, Chen Z Y, Zhou Q C, Xing X X, Tong T, Yao Y, Bao J M, Yu L, Chen S, Ren Z F. Efficient alkaline water/seawater hydrogen evolution by a nanorod-nanoparticle-structured ni-mon catalyst with fast water-dissociation kinetics[J]. Adv. Mater., 2022,342201774. doi: 10.1002/adma.202201774
Chu Y, Wang D, Shan X L, Liu C H, Wang W C, Mitsuzaki N, Chen Z D. Activity engineering to transition metal phosphides as bifunctional electrocatalysts for efficient water-splitting[J]. Int. J. Hydrog. Energy, 2022,47:38983-39000. doi: 10.1016/j.ijhydene.2022.09.070
Wang M, Zhang L, He Y J, Zhu H W. Recent advances in transitionmetal-sulfide-based bifunctional electrocatalysts for overall water splitting[J]. J. Mater. Chem. A, 2021,9:5320-5363. doi: 10.1039/D0TA12152E
Han Q L, Luo Y H, Li J D, Du X H, Sun S J, Wang Y J, Liu G H, Chen Z W. Efficient NiFe-based oxygen evolution electrocatalysts and origin of their distinct activity[J]. Appl. Catal. B-Environ., 2022,304120937. doi: 10.1016/j.apcatb.2021.120937
Luo J B, Zhou Y, Tuo Y X, Gu Y F, Wang X Z, Guo Q Y, Chen C, Wang D, Wang S T, Zhang J. Interfacial polarization in ultra-small Co3S4-MoS2 heterostructure for efficient electrocatalytic hydrogen evolution reaction[J]. Appl. Mater. Today, 2022,26101311. doi: 10.1016/j.apmt.2021.101311
Zhu J L, Qian J M, Peng X B, Xia B R, Gao D Q. Etching-induced surface reconstruction of NiMoO4 for oxygen evolution reaction[J]. Nano-Micro Lett., 2023,1530. doi: 10.1007/s40820-022-01011-3
Yan Y T, Lin J H, Xu T X, Liu B S, Huang K K, Qiao L, Liu S D, Cao J, Jun S C, Yamauchi Y, Qi J L. Atomic-level platinum filling into Nivacancies of dual-deficient NiO for boosting electrocatalytic hydrogen evolution[J]. Adv. Energy Mater., 2022,122200434. doi: 10.1002/aenm.202200434
Li X P, Zheng L R, Liu S J, Ouyang T, Ye S Y, Liu Z Q. Heterostructures of NiFe LDH hierarchically assembled on MoS2 nanosheets as high-efficiency electrocatalysts for overall water splitting[J]. Chin. Chem. Lett., 2022,33:4761-4765. doi: 10.1016/j.cclet.2021.12.095
Salem K E, Saleh A A, Khedr G E, Shaheen B S, Allam N K. Unveiling the optimal interfacial synergy of plasma-modulated trimetallic Mn-Ni-Co phosphides: Tailoring deposition ratio for complementary water splitting[J]. Energy Environ. Mater., 2023,6e12324.
Wang P Y, Pu Z H, Li W Q, Zhu J W, Zhang C T, Zhao Y F, Mu S C. Coupling NiSe2-Ni2P heterostructure nanowrinkles for highly efficient overall water splitting[J]. J. Catal., 2019,377:600-608. doi: 10.1016/j.jcat.2019.08.005
Bodhankar P M, Sarawade P B, Kumar P, Vinu A, Kulkarni A P, Lokhande C D, Dhawale D S. Nanostructured metal phosphide based catalysts for electrochemical water splitting: A review[J]. Small, 2022,182107572. doi: 10.1002/smll.202107572
Li Y, Li R P, Wang D, Xu H, Meng F, Dong D R, Jiang J, Zhang J Q, An M Z, Yang P X. A review: Target-oriented transition metal phosphide design and synthesis for water splitting[J]. Int. J. Hydrog. Energy, 2021,46:5131-5149. doi: 10.1016/j.ijhydene.2020.11.030
Jebaslinhepzybai B T, Partheeban T, Gavali D S, Thapa R, Sasidharan M. One-pot solvothermal synthesis of Co2P nanoparticles: An efficient HER and OER electrocatalysts[J]. Int. J. Hydrog. Energy, 2021,46:21924-21938. doi: 10.1016/j.ijhydene.2021.04.022
Schipper D E, Zhao Z H, Thirumalai H, Leitner A P, Donaldson S L, Kumar A, Qin F, Wang Z M, Grabow L C, Bao J M, Whitmire K H. Effects of catalyst phase on the hydrogen evolution reaction of water splitting: Preparation of phase-pure films of FeP, Fe2P, and Fe3P and their relative catalytic activities[J]. Chem. Mater., 2018,30:3588-3598. doi: 10.1021/acs.chemmater.8b01624
Popczun E J, McKone J R, Read C G, Biacchi A J, Wiltrout A M, Lewis N S, Schaak R E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2013,135:9267-9270. doi: 10.1021/ja403440e
Ma H, Yan W S, Yu Y L, Deng L H, Hong Z, Song L, Li L. Phosphorus vacancies improve the hydrogen evolution of MoP electrocata-lysts[J]. Nanoscale, 2023,15:1357-1364. doi: 10.1039/D2NR05964A
Bai N N, Li Q, Mao D Y, Li D K, Dong H Z. One-step electrodeposition of Co/CoP film on Ni foam for efficient hydrogen evolution in alkaline solution[J]. ACS Appl. Mater. Interfaces, 2016,8:29400-29407. doi: 10.1021/acsami.6b07785
Duan D H, Guo D S, Gao J, Liu S B, Wang Y F. Electrodeposition of cobalt-iron bimetal phosphide on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting[J]. J. Colloid Interface Sci., 2022,622:250-260. doi: 10.1016/j.jcis.2022.04.127
Jiang N, You B, Sheng M L, Sun Y J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting[J]. Angew. Chem. Int. Ed., 2015,54:6251-6254. doi: 10.1002/anie.201501616
Liu X X, He Q, Xiao S H, Li X R, Chang L, Xiang Y, Hu K, Niu X B, Wu R, Chen J S. Realizing efficient overall water splitting by tuning the cobalt content in self-supported Nix-Coy-P Microarrays[J]. ChemElectroChem, 2021,8:1307-1315. doi: 10.1002/celc.202001585
Tang F, Guo S J, Sun Y G, Lin X J, Qiu J H, Cao A M. Facile Synthesis of Fe-doped CoO nanotubes as high-efficient electrocatalysts for oxygen evolution reaction[J]. Small Struct., 2022,32100211. doi: 10.1002/sstr.202100211
Zhang D D, Huang R X, Xie H M, Li R Z, Liu X Y, Pan M, Lei Y. Effect of the valence state of initial iron source on oxygen evolution activity of Fe-doped Ni-MOF[J]. Chem. Pap., 2020,74:2775-2784. doi: 10.1007/s11696-020-01112-6
Tabassum L, Islam M K, Perea I P, Li M L, Huang X N, Tansim H, Suib S L. Facile synthesis of transition-metal-doped (Fe, Co, and Ni) CuS/CuO/CS nanorod arrays for superior electrocatalytic oxygen evolution reaction[J]. ACS Appl. Energy Mater., 2022,5:12039-12048. doi: 10.1021/acsaem.2c01384
Li C M, Zhu D Q, Cheng S S, Zuo Y, Wang Y, Ma C C, Dong H J. Recent research progress of bimetallic phosphides-based nanomaterials as cocatalyst for photocatalytic hydrogen evolution[J]. Chin. Chem. Lett., 2022,33:1141-1153. doi: 10.1016/j.cclet.2021.07.057
Wu Y H, Lian J Q, Wang Y X, Sun J J, He Z, Gu Z J. Potentiostatic electrodeposition of self-supported Ni-S electrocatalyst supported on Ni foam for efficient hydrogen evolution[J]. Mater. Des., 2021,198109316. doi: 10.1016/j.matdes.2020.109316
Zhang Y F, Lin L, Liu J T, Peng J Y, Chen Z, Chen L J. A hierarchical and branch-like NiCoS/NF material prepared by gradient electrodeposition method for oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2021,46:36629-36639. doi: 10.1016/j.ijhydene.2021.08.187
Du Z J, Xiong D H, Verma S K, Liu B S, Zhao X J, Liu L F, Li H. A low temperature hydrothermal synthesis of delafossite CuCoO2 as an efficient electrocatalyst for the oxygen evolution reaction in alkaline solutions[J]. Inorg. Chem. Front., 2018,5:183-188. doi: 10.1039/C7QI00621G
Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L S, Jin S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. J. Am. Chem. Soc., 2013,135:10274-10277. doi: 10.1021/ja404523s
Mai W S, Cui Q, Zhang Z Q, Zhang K K, Li G Q, Tian L H, Hu W. CoMoP/NiFe-layered double-hydroxide hierarchical nanosheet arrays standing on ni foam for efficient overall water splitting[J]. ACS Appl. Energy Mater., 2020,3:8075-8085.
Kim H, Oh S, Cho E, Kwon H. 3D porous cobalt-iron-phosphorus bifunctional electrocatalyst for the oxygen and hydrogen evolution reactions[J]. ACS Sustain. Chem. Eng., 2018,6:6305-6311. doi: 10.1021/acssuschemeng.8b00118
Miao C C, Zheng X W, Sun J M, Wang H, Qiao J, Han N, Wang S P, Gao W, Liu X H, Yang Z X. Facile electrodeposition of amorphous nickel/nickel sulfide composite films for high-efficiency hydrogen evolution reaction[J]. ACS Appl. Energy Mater., 2021,4:927-933. doi: 10.1021/acsaem.0c02863
Liu W, Liu H, Dang L N, Zhang H X, Wu X L, Yang B, Li Z J, Zhang X W, Lei L C, Jin S. Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photoelectrochemical oxygen evolution[J]. Adv. Funct. Mater., 2017,271603904. doi: 10.1002/adfm.201603904
Chen B L, Li R, Ma G P, Gou X L, Zhu Y Q, Xia Y D. Cobalt sulfide/N, S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions[J]. Nanoscale, 2015,7:20674-20684. doi: 10.1039/C5NR07429K
Xu H, Wei J J, Liu C F, Zhang Y P, Tian L, Wang C Q, Du Y K. Phosphorus-doped cobalt-iron oxyhydroxide with untrafine nanosheet structure enable efficient oxygen evolution electrocatalysis[J]. J. Colloid Interface Sci., 2018,530:146-153. doi: 10.1016/j.jcis.2018.06.073
Pei Y, Ge Y C, Chu H, Smith W, Dong P, Ajayan P M, Ye M X, Shen J F. Controlled synthesis of 3D porous structured cobalt-iron based nanosheets by electrodeposition as asymmetric electrodes for ultra-efficient water splitting[J]. Appl. Catal. B-Environ., 2019,244:583-593. doi: 10.1016/j.apcatb.2018.11.091
Dutta A, Mutyala S, Samantara A K, Bera S, Jena B K, Pradhan N. Synergistic effect of inactive iron oxide core on active nickel phosphide shell for significant enhancement in oxygen evolution reaction activity[J]. ACS Energy Lett., 2018,3:141-148. doi: 10.1021/acsenergylett.7b01141
Li F, Bu Y F, Lv Z J, Mahmood J, Han G F, Ahmad I, Kim G, Zhong Q, Baek J B. Porous cobalt phosphide polyhedrons with iron doping as an efficient bifunctional electrocatalyst[J]. Small, 2017,131701167. doi: 10.1002/smll.201701167
Zhang Y, Xu J, Ding Y G, Wang C D. Tuning the d-band center enables nickel-iron phosphide nanoprisms as efficient electrocatalyst towards oxygen evolution[J]. Int. J. Hydrog. Energy, 2020,45:17388-17397. doi: 10.1016/j.ijhydene.2020.04.213
Babu D D, Huang Y Y, Anandhababu G, Ghausi M A, Wang Y B. Mixed-metal-organic framework self-template synthesis of porous hybrid oxyphosphides for efficient oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2017,9:38621-38628. doi: 10.1021/acsami.7b13359
Yuan H T, Wang Y Z, Yang C X, Liang Z Z, Chen M X, Zhang W, Zheng H Q, Cao R. Ultra-thin Co-Fe layered double hydroxide hollow nanocubes for efficient electrocatalytic water oxidation[J]. ChemPhysChem, 2019,20:2964-2967. doi: 10.1002/cphc.201900524
Zhang Y, Gao X B, Lv L, Xu J, Lin H F, Ding Y G, Wang C D. Tailoring π-symmetry electrons in cobalt-iron phosphide for highly efficient oxygen evolution[J]. Electrochim. Acta, 2020,341136029. doi: 10.1016/j.electacta.2020.136029
Sun H C, Li J G, Lv L, Li Z S, Ao X, Xu C H, Xue X Y, Hong G, Wang C D. Engineering hierarchical CoSe/NiFe layered-double-hydroxide nanoarrays as high efficient bifunctional electrocatalyst for overall water splitting[J]. J. Power Sources, 2019,425:138-146. doi: 10.1016/j.jpowsour.2019.04.014
Zhang J Y, Lv L, Tian Y, Li Z, Ao X, Lan Y, Jiang J, Wang C. Rational design of cobalt-iron selenides for highly efficient electrochemical water oxidation[J]. ACS Appl. Mater. Interfaces, 2017,9:33833-33840. doi: 10.1021/acsami.7b08917
Wang Y Y, Zhang Y Q, Liu Z J, Xie C, Feng S, Liu D D, Shao M F, Wang S Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts[J]. Angew. Chem. Int. Ed., 2017,56:5867-5871. doi: 10.1002/anie.201701477
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Genxiang Wang , Linfeng Fan , Peng Wang , Junfeng Wang , Fen Qiao , Zhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498
Lu Dai , Yuxin Ren , Shuang Li , Meidi Wang , Chentao Hu , Ya-Pan Wu , Guangtong Hai , Dong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774
Run-Han Li , Tian-Yi Dang , Wei Guan , Jiang Liu , Ya-Qian Lan , Zhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423