Citation: Miao CAI, Zhu-Yun WANG, Xiao-Li CHEN, Lu LIU, Rui-Kui YAN, Hua-Li CUI, Hua YANG, Ji-Jiang WANG. Synthesis, structure, and fluorescence sensing properties of zinc coordination polymer based on 4-(2, 4-dicarboxylic phenoxyl) phthalic acid ligand[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1379-1388. doi: 10.11862/CJIC.2023.101 shu

Synthesis, structure, and fluorescence sensing properties of zinc coordination polymer based on 4-(2, 4-dicarboxylic phenoxyl) phthalic acid ligand

  • Corresponding author: Xiao-Li CHEN, chenxiaoli003@163.com
  • Received Date: 29 November 2022
    Revised Date: 28 March 2023

Figures(6)

  • A zinc coordination polymer (Zn-CP) based on H4dpa and bpy ligands (H4dpa=4-(2, 4-dicarboxylic phenoxyl) phthalic acid, bpy=4, 4′-dipyridine), namely [Zn(H2dpa)(bpy)1.5]n (1), has been hydrothermal synthesized and structurally characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction analysis. 1 shows 1D double chain based on Zn2+ ion, H2dpa2- and bpy ligand. The adjacent 1D double chains further expand into a 3D supramolecular network through hydrogen bonding. Fluorescence studies show that 1 is a fluorescence sensor with high sensitivity, good selectivity, and multiple responses, which can be used for the detection of pesticides and nitro explosives. Interestingly, 2, 4, 6-trinitrobenzene (TNP), and pyrimethanil (Pth) had an obvious quenching effect on the fluorescence emission of 1, while imazalil (Ima) had an enhancement effect on the fluorescence of 1. In addition, the fluorescence mechanism was investigated by means of UV-Vis absorption spectrum, fluorescence lifetime, and X-ray photoelectron spectroscopy.
  • 加载中
    1. [1]

      Wu K, Hu J S, Shi S N, Li J X, Cheng X F. A thermal stable pincer-MOF with high selective and sensitive nitro explosive TNP, metal ion Fe3+ and pH sensing in aqueous solution[J]. Dyes Pigment., 2020,173107993. doi: 10.1016/j.dyepig.2019.107993

    2. [2]

      Lu L, Wang J, Wu W P, Ma A Q, Liu J Q, Yaday R, Kumar A. Fluorescent sensing of nitroaromatics by two coordination polymers having potential active sites[J]. J. Lumin., 2017,186:40-47. doi: 10.1016/j.jlumin.2017.02.010

    3. [3]

      Wu K, Hu J S, Cheng X F, Li J X, Zhou C H. A superior luminescent metal-organic framework sensor for sensing trace Al3+ and picric acid via disparate charge transfer behaviors[J]. J. Lumin., 2020,219116908. doi: 10.1016/j.jlumin.2019.116908

    4. [4]

      Wu M Q, Zhang H X, Ge C Y, Wu J, Ma S C, Yuan Y, Zhao L Y, Yao T J, Zhang X, Yang Q F. A stable lanthanum-based metal-organic frameworks as fluorescent sensor for detecting TNP and Fe3+ with hyper-sensitivity and ultra-selectivity[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2022,264120276. doi: 10.1016/j.saa.2021.120276

    5. [5]

      Qiu S L, Xue M, Zhu G S. Metal-organic framework membranes: From synthesis to separation application[J]. Chem. Soc. Rev., 2014,43:6116-6140. doi: 10.1039/C4CS00159A

    6. [6]

      Han S D, Liu S J, Wang Q L, Miao X H, Hu T L. Synthesis and magnetic properties of a series of octanuclear[Fe6Ln2]nanoclusters[J]. Cryst. Growth Des., 2015,15:2253-2259. doi: 10.1021/acs.cgd.5b00024

    7. [7]

      Ye Y, Du J F, Sun L B, Liu Y C, Wang S, Song X W, Liang Z Q. Two zinc metal-organic framework isomers based on pyrazine tetracarboxylic acid and dipyridinylbenzene for adsorption and separation of CO2 and light hydrocarbons[J]. Dalton Trans., 2020,49:1135-1142. doi: 10.1039/C9DT04305E

    8. [8]

      Liu L, Wang S M, Han Z B, Ding M, Yuan D Q, Jiang H L. Exceptionally robust in-based metal-organic framework for highly efficient carbon dioxide capture and conversion[J]. Inorg. Chem., 2016,55:3558-3565. doi: 10.1021/acs.inorgchem.6b00050

    9. [9]

      Chai D F, Gómez-García C J, Li B, Pang H J, Ma H Y, Wang H M, Tan L C. Polyoxometalate-based metal-organic frameworks for boosting electrochemical capacitor performance[J]. Chem. Eng. J., 2019,373:587-597. doi: 10.1016/j.cej.2019.05.084

    10. [10]

      Wang G D, Li Y Z, Shi W J, Zhang B, Hou L, Wang Y Y. A robust cluster-based Eu-MOF as multi-functional fluorescence sensor for detection of antibiotics and pesticides in water[J]. Sens. Actuator B-Chem., 2021,331129377. doi: 10.1016/j.snb.2020.129377

    11. [11]

      Liu L, Chen X L, Shang L, Cai M, Cui H L, Yang H, Wang J J. Eu3+-postdoped MOFs are used for fluorescence sensing of TNP, TC and pesticides and for anti-counterfeiting ink application[J]. Dyes Pigment., 2022,202110253. doi: 10.1016/j.dyepig.2022.110253

    12. [12]

      Hunter J R E, Riederer A M, Ryan P B. Method for the determination of organophosphorus and pyrethroid pesticides in food via gas chromatography with electron-capture detection[J]. J. Agric. Food Chem., 2010,58:1396-1402. doi: 10.1021/jf9028859

    13. [13]

      Chen Q, Fung Y. Capillary electrophoresis with immobilized quantum dot fluorescence detection for rapid determination of organophosphorus pesticides in vegetables[J]. Electrophoresis, 2010,31:3107-3114. doi: 10.1002/elps.201000260

    14. [14]

      Gai Y L, Guo Q, Zhao X Y, Chen Y, Liu S, Zhang Y, Zhuo C X, Yao C, Xiong K C. Extremely stable europium organic framework for luminescent sensing of Cr2O72- and Fe3+ in aqueous systems[J]. Dalton Trans., 2018,47:12051-12055. doi: 10.1039/C8DT02313A

    15. [15]

      Hu Z, Deibert B J, Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chem. Soc. Rev., 2014,43:5815-5840. doi: 10.1039/C4CS00010B

    16. [16]

      Ren L L, Cui Y Y, Cheng A L, Gao E Q. Water-stable lanthanide-based metal-organic frameworks for rapid and sensitive detection of nitrobenzene derivatives[J]. J. Solid State Chem., 2019,270:463-469. doi: 10.1016/j.jssc.2018.11.041

    17. [17]

      Sun T C, Fan R Q, Xiao R, Xing T F, Qin M Y, Liu Y Q, Hao S, Chen W, Yang Y L. Anionic Ln-MOF with tunable emission for heavy metal ion capture and L-cysteine sensing in serum[J]. J. Mater. Chem. A, 2020,8:5587-5594. doi: 10.1039/C9TA13932J

    18. [18]

      Sheldrick G M. SHELXL-2018, Program for X-ray crystal structure solution, University of Göttingen, Germany, 2018.

    19. [19]

      HUANG J X, ZHAO H, LIU S Q, ZHANG J J. Two-dimensional luminescent coordination polymer based on dinuclear {Zn2(COO)4} second buildings units: Crystal structure and detection of Fe3+[J]. Chinese J. Inorg. Chem., 2021,37(8):1513-1518.  

    20. [20]

      CHEN X L, LIU L, SHANG L, CAI M, CUI H L, YANG H, WANG J J. A Highly sensitive and multi-responsive Zn-MOF fluorescent sensor for detection of Fe3+, 2, 4, 6-trinitrophenol, and ornidazole[J]. Chinese J. Inorg. Chem., 2022,38(4):735-744.  

    21. [21]

      Valeur B. Molecular fluorescence: Principles and applications. Weinheim: Wiley-VCH, 2002.

    22. [22]

      Xiao Q Q, Dong G Y, Li Y H, Cui G H. Cobalt(Ⅱ)-based 3D coordination polymer with unusual 4, 4, 4-connected topology as a dual-responsive fluorescent chemosensor for acetylacetone and Cr2O72-[J]. Inorg. Chem., 2019,58:15696-15699. doi: 10.1021/acs.inorgchem.9b02534

    23. [23]

      Wu J, Li B H, Zhong H R, Qiu S W, Liang Y W, Zhuang X Y, Singh A, Kumar A. Fluorescence sensing and photocatalytic properties of a 2D stable and biocompatible Zn(Ⅱ)-based polymer[J]. J. Mol. Struct., 2018,1158:264-270. doi: 10.1016/j.molstruc.2018.01.028

    24. [24]

      Wiwasuku T, Boonmak J, Siriwong K, Ervithayasuporn V, Youngme S. Highly sensitive and selective fluorescent sensor based on a multi-responsive ultrastable amino-functionalized Zn(Ⅱ)-MOF for hazardous chemicals[J]. Sens. Actuator B-Chem., 2019,284:403-413. doi: 10.1016/j.snb.2018.12.094

    25. [25]

      Senthilkumar S, Goswami R, Obasi N L, Neogi S. Construction of pillar-layer metal-organic frameworks for CO2 adsorption under humid climate: High selectivity and sensitive detection of picric acid in water[J]. ACS Sustain. Chem. Eng., 2017,5:11307-11315. doi: 10.1021/acssuschemeng.7b02087

    26. [26]

      Yang Y, Shen K, Lin J Z, Zhou Y, Liu Q Y, Hang C, Abdelhamid H N, Zhang Z Q, Chen H. A Zn-MOF constructed from electron-rich π-conjugated ligands with an interpenetrated graphene-like net as an efficient nitroaromatic sensor[J]. RSC Adv., 2016,6:45475-45481. doi: 10.1039/C6RA00524A

    27. [27]

      Jia W, Ren S M, Xia H C, Zhang C, Zhang J F. An ultra-stable Cd coordination polymer based on double-chelated ligand for efficient dual-response of TNP and MnO4-[J]. Sens. Actuator B-Chem., 2020,317128230. doi: 10.1016/j.snb.2020.128230

  • 加载中
    1. [1]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    4. [4]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    5. [5]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    6. [6]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    7. [7]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    8. [8]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    9. [9]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    10. [10]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    11. [11]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    12. [12]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    13. [13]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    16. [16]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    19. [19]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    20. [20]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

Metrics
  • PDF Downloads(1)
  • Abstract views(2338)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return