Rapid synthesis of Ag-based metal-organic framework at room temperature for efficient electrocatalytic CO2 reduction
- Corresponding author: Fu-Sheng KE, kefs@whu.edu.cn
Citation:
Yu-Can CHE, Peng-Wei CHENG, Yi ZHOU, Fu-Sheng KE. Rapid synthesis of Ag-based metal-organic framework at room temperature for efficient electrocatalytic CO2 reduction[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(6): 1005-1013.
doi:
10.11862/CJIC.2023.080
Lai W C, Qiao Y, Zhang J W, Lin Z Q, Huang H W. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction[J]. Energy Environ. Sci., 2022,15(9):3603-3629. doi: 10.1039/D2EE00472K
Zhang J W, Sewell C D, Huang H W, Lin Z Q. Closing the anthropogenic chemical carbon cycle toward a sustainable future via CO2 valorization[J]. Adv. Energy Mater., 2021,11(47)2102767. doi: 10.1002/aenm.202102767
ZHANG Y X, WANG C, SHU W X. Research progress of carbon dioxide reduction and utilization[J]. Chemical Industry and Engineering Progress, 2023,42(2):944-956. doi: 10.16085/j.issn.1000-6613.2022-0705
Shih C F, Zhang T, Li J H, Bai C L. Powering the future with liquid sunshine[J]. Joule, 2018,2(10):1925-1949. doi: 10.1016/j.joule.2018.08.016
Yin X B, Yang R G, Tan G, Fan S H. Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source[J]. Science, 2020,370(6518):786-791. doi: 10.1126/science.abb0971
Rosenbloom D, Markard J. A COVID-19 recovery for climate[J]. Science, 2020,368(6490)447. doi: 10.1126/science.abc4887
PENG L W, ZHANG Y, HE R N, XU N N, QIAO J L. Research advances in electrocatalysts, electrolytes, reactors and membranes for the electrocatalytic carbon dioxide reduction reaction[J]. Acta Phys.-Chim. Sin., 2023,392302037. doi: 10.3866/PKU.WHXB202302037
Sanz-Pérez E S, Murdock C R, Didas S A, Jones C W. Direct capture of CO2 from ambient air[J]. Chem. Rev., 2016,116(19):11840-11876. doi: 10.1021/acs.chemrev.6b00173
Qiao J L, Liu Y Y, Hong F, Zhang J J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chem. Soc. Rev., 2014,43(2):631-675. doi: 10.1039/C3CS60323G
Zhao S, Jin R X, Jin R C. Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: From bulk metals to nanoparticles and atomically precise nanoclusters[J]. ACS Energy. Lett., 2018,3(2):452-462. doi: 10.1021/acsenergylett.7b01104
Han G H, Bang J, Park G, Choe S, Jang Y J, Jang H W, Kim S Y, Ahn , Sang H. Recent advances in electrochemical, photochemical, and photoelectrochemical reduction of CO2 to C2+ products[J]. Small, 2023,192205765. doi: 10.1002/smll.202205765
Baños R, Manzano-Agugliaro F, Montoya F G, Gil C, Alcayde A, Gómez J. Optimization methods applied to renewable and sustainable energy: A review[J]. Renew. Sust. Energ. Rev., 2011,15(4):1753-1766. doi: 10.1016/j.rser.2010.12.008
Wang G X, Chen J X, Ding Y C, Cai P W, Yi L C, Li Y, Tu C Y, Hou Y, Wen Z H, Dai L M. Electrocatalysis for CO2 conversion: From fundamentals to value-added products[J]. Chem. Soc. Rev., 2021,50(8):4993-5061. doi: 10.1039/D0CS00071J
Zhao J, Xue S, Barber J, Zhou Y W, Meng J, Ke X B. An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction[J]. J. Mater. Chem. A, 2020,8(9):4700-4734. doi: 10.1039/C9TA11778D
Popović S, Smiljanić M, Jovanovič P, Vavra J, Buonsanti R, Hodnik N. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction[J]. Angew. Chem. Int. Ed., 2020,59(35):14736-14746. doi: 10.1002/anie.202000617
Sheng W C, Kattel S, Yao S Y, Yan B H, Liang Z X, Hawxhurst C J, Wu Q Y, Chen J G. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios[J]. Energy Environ. Sci., 2017,10(5):1180-1185. doi: 10.1039/C7EE00071E
Yang H, Huang J L, Yang H, Guo Q Y, Jiang B, Chen J X, Yuan X L. Design and synthesis of Ag-based catalysts for electrochemical CO2 reduction: Advances and perspectives[J]. Chem.-Asian J., 2022,17(18)e202200637.
Mistry H, Choi Y W, Bagger A, Scholten F, Bonifacio C S, Sinev I, Divins N J, Zegkinoglou I, Jeon H S, Kisslinger K, Stach E A, Yang J C, Rossmeisl J, Roldan Cuenya B. Enhanced carbon dioxide electroreduction to carbon monoxide over defect-rich plasma-activated silver catalysts[J]. Angew. Chem. Int. Ed., 2017,56(38):11394-11398. doi: 10.1002/anie.201704613
Firet N J, Blommaert M A, Burdyny T, Venugopal A, Bohra D, Longo A, Smith A W. Operando EXAFS study reveals presence of oxygen in oxide-derived silver catalysts for electrochemical CO2 reduction[J]. J. Mater. Chem. A, 2019,7(6):2597-2607. doi: 10.1039/C8TA10412C
Wang D, Zhu Y, Yu W T, He Z Q, Dong F L, Shen Y, Zeng T, Lu X H, Ma J, Wang L Z, Song S. Ag-MOF-derived 3D Ag dendrites used for the efficient electrocatalytic reduction of CO2 to CO[J]. Electrochim. Acta, 2022,403139652. doi: 10.1016/j.electacta.2021.139652
Liu S, Tao H, Zeng L, Liu Q, Xu Z, Liu Q, Luo J L. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates[J]. J. Am. Chem. Soc., 2017,139:2160-2163. doi: 10.1021/jacs.6b12103
Raciti D, Braun T, Tackett B M, Xu H, Cruz M, Wiley B J, Moffat T P. High-aspect-ratio Ag nanowire mat electrodes for electrochemical CO production from CO2[J]. ACS Catal., 2021,11(19):11945-11959. doi: 10.1021/acscatal.1c02783
Zhang Y, Ji L, Qiu W B, Shi X F, Asiri A M, Sun X P. Iodidederived nanostructured silver promotes selective and efficient carbon dioxide conversion into carbon monoxide[J]. Chem. Commun., 2018,54(21):2666-2669. doi: 10.1039/C8CC00984H
Hsieh Y C, Betancourt L E, Senanayake S D, Hu E Y, Zhang Y, Xu W Q, Polyansky D E. Modification of CO2 reduction activity of nanostructured silver electrocatalysts by surface halide anions[J]. ACS Appl. Energy Mater., 2019,2(1):102-109. doi: 10.1021/acsaem.8b01692
Lin R, Ma X L, Cheong W C, Zhang C, Zhu W, Pei J J, Zhang K Y, Wang B, Liang S Y, Liu Y X, Zhuang Z, Yu R, Xiao H, Li J, Wang D S, Peng Q, Chen C, Li Y D. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption[J]. Nano Res., 2019,12(11):2866-2871. doi: 10.1007/s12274-019-2526-1
Low Q H, Loo N W X, Calle-Vallejo F, Yeo B S. Enhanced electroreduction of carbon dioxide to methanol using zinc dendrites pulsedeposited on silver foam[J]. Angew. Chem. Int. Ed., 2019,131(8):2278-2282. doi: 10.1002/ange.201810991
ZHAO D, LIAO Z T, ZHANG W, CHEN Z Z, SUN W Y. Progress in functional metal-organic frameworks for catalytic conversion of carbon dioxide[J]. Chinese J. Inorg. Chem., 2021,37(7):1153-1176.
ZHAO M, WU D, JIANG F L, CHEN Q H, HONG M C. A flexible ultramicroporous metal-organic framework for size-selective carbon dioxide capture constructed from a semirigid[J]. Chinese J. Inorg. Chem., 2022,38(12):2459-2567. doi: 10.11862/CJIC.2022.256
Li Z, Song M, Zhu W Y, Zhuang W C, Du X H, Tian L. MOF-derived hollow heterostructures for advanced electrocatalysis[J]. Coord. Chem. Rev., 2021,439213946. doi: 10.1016/j.ccr.2021.213946
JIA H N, YAO N, CONG H J. Rapid synthesis of Co-based metalorganic framework nanoparticle at room temperature for efficient oxy- gen evolution reaction[J]. Chinese J. Inorg. Chem., 2021,37(11):2011-2019. doi: 10.11862/CJIC.2021.233
Zhuo L L, Chen P, Zheng K, Zhang X W, Wu J X, Lin D Y, Liu S Y, Wang Z S, Liu J Y, Zhou D D, Zhang J P. Flexible cuprous triazolate frameworks as highly stable and efficient electrocatalysts for CO2 reduction with tunable C2H4/CH4 selectivity[J]. Angew. Chem. Int. Ed., 2022,61(28)e202204967.
Zou Y B, Zhan T T, Yang Y, Fan Z W, Li Y B, Zhang Y F, Ma X L, Chen Q H, Xiang S C, Zhang Z J. Single-phase proton-and electronconducting Ag-organic coordination polymers for efficient CO2 electroreduction[J]. J. Mater. Chem. A, 2022,10(6):3216-3225. doi: 10.1039/D1TA09548J
Hong W T, Risch M, Stoerzinger K A, Grimaud A, Suntivich J, Shao-Horn Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis[J]. Energy Environ. Sci., 2015,8(5):1404-1427. doi: 10.1039/C4EE03869J
She Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017,355(146)eaad4998.
Zhou Y T, Abazari R, Chen J, Tahir M, Kumar A, Ikreedeegh R R, Rani E, Singh H, Kirillov A M. Bimetallic metal-organic frameworks and MOF-derived composites: Recent progress on electro- and photoelectrocatalytic applications[J]. Coord. Chem. Rev., 2022,451214264. doi: 10.1016/j.ccr.2021.214264
Zhu H L, Chen H Y, Han Y X, Zhao Z H, Liao P Q, Chen X M. A porous π-π stacking framework with dicopper(Ⅰ) sites and adjacent proton relays for electroreduction of CO2 to C2+ products[J]. J. Am. Chem. Soc., 2022,144(29):13319-13326. doi: 10.1021/jacs.2c04670
Xi W, Ma R Z, Wang H, Gao Z, Zhang W Q, Zhao Y F. Ultrathin Ag nanowires electrode for electrochemical syngas production from carbon dioxide[J]. ACS. Sustain. Chem. Eng., 2018,6(6):7687-7694. doi: 10.1021/acssuschemeng.8b00527
Li H, Wen P, Itanze D S, Hood Z D, Ma X, Kim M, Adhikari S, Lu C, Dun C C, Chi M F, Qiu Y J, Geyer S. M. Colloidal silver diphosphide (AgP2) nanocrystals as low overpotential catalysts for CO2 reduction to tunable syngas[J]. Nat. Commun., 2019,105724. doi: 10.1038/s41467-019-13388-8
Luan C, Shao Y, Lu Q, Gao S, Huang K, Wu H, Yao K. High-performance carbon dioxide electrocatalytic reduction by easily fabricated large-scale silver nanowire arrays[J]. ACS Appl. Mater. Interfaces, 2018,10(21):17950-17956. doi: 10.1021/acsami.8b03461
Qiu J P, Tang J T, Shen J, Wu C W, Qian M Q, He Z Q, Chen J M, Shuang S. Preparation of a silver electrode with a three-dimensional surface and its performance in the electrochemical reduction of carbon dioxide[J]. Electrochim. Acta, 2016,203:99-108. doi: 10.1016/j.electacta.2016.03.182
Ma M, Trześniewski B J, Xie J, Smith W A. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts[J]. Angew. Chem. Int. Ed., 2016,128(33):9900-9904. doi: 10.1002/ange.201604654
Lu Q, Rosen J, Zhou Y, Hutchings G S, Kimmel Y C, Chen J G, Jiao F. A selective and efficient electrocatalyst for carbon dioxide reduction[J]. Nat. Commun., 2014,53242. doi: 10.1038/ncomms4242
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Bin HE , Hao ZHANG , Lin XU , Yanghe LIU , Feifan LANG , Jiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Wenjie SHI , Fan LU , Mengwei CHEN , Jin WANG , Yingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360