Citation: Sheng-Yang HAO, Yu-Ting ZHANG, Xiao-Qing WANG. Preparation and supercapacitor performance of Mo-doped NiMnSe2[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1091-1102. doi: 10.11862/CJIC.2023.072 shu

Preparation and supercapacitor performance of Mo-doped NiMnSe2

  • Corresponding author: Xiao-Qing WANG, Xiaoqingwang2012@126.com
  • Received Date: 15 November 2022
    Revised Date: 20 April 2023

Figures(9)

  • In this work, we applied a simple hydrothermal method to grow a Mo-doped NiMnSe2 without binding reagent on the foam nickel (noted as Ni0.8Mo0.2MnSe2). Small amount of Mo substitution for Ni can provide rich reactive sites and therefore greatly enhances the electrochemical performance of NiMnSe2. The specific capacity of Ni0.8Mo0.2MnSe2 at 1 A·g-1 reached 1 404.0 F·g-1. Mo substitution can also decrease the charge transfer resistance and diffusion resistance as well as improve the stability of the material structure. The Ni0.8Mo0.2MnSe2//AC (activated carbon) hybrid supercapacitor (HSC) delivered capacity of 81.6 F·g-1 and exhibited excellent rate performance. After 10 000 cycles at 2 A·g-1, the Ni0.8Mo0.2MnSe2//AC HSC maintained 95.8% of the capacity, indicating a high cycling stability. Under the power density of 376.6 W·kg-1, the Ni0.8Mo0.2MnSe2//AC HSC showed an energy density of 25.5 Wh·kg-1, higher than those of other similar supercapacitor, implying a high energy storage ability.
  • 加载中
    1. [1]

      Chen R, Yu M, Sahu R P, Puri I K, Zhitomirsky I. The development of pseudocapacitor electrodes and devices with high active mass loading[J]. Adv. Energy Mater., 2020,10(20)1903848. doi: 10.1002/aenm.201903848

    2. [2]

      Liu J L, Wang J, Xu C H, Jiang H, Li C Z, Zhang L L, Lin J Y, Shen Z X. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design[J]. Adv. Sci., 2018,5(1)1700322. doi: 10.1002/advs.201700322

    3. [3]

      Shao Y L, El-Kady M F, Sun J Y, Li Y G, Zhang Q H, Zhu M F, Wang H Z, Dunn B, Kaner R B. Design and mechanisms of asymmetric supercapacitors[J]. Chem. Rev., 2018,118(18):9233-9280. doi: 10.1021/acs.chemrev.8b00252

    4. [4]

      Ghosh S, Samanta P, Murmu N C, Kuila T. Investigation of electrochemical charge storage in nickel-cobalt-selenide/reduced graphene oxide composite electrode and its hybrid supercapacitor device[J]. J. Alloy. Compd., 2020,835155432. doi: 10.1016/j.jallcom.2020.155432

    5. [5]

      Zhao X, Mao L, Cheng Q H, Li J, Liao F F, Yang G Y, Xie L, Zhao C L, Chen L Y. Two-dimensional spinel structured Co-based materials for high performance supercapacitors: A critical review[J]. Chem. Eng. J., 2020,387124081. doi: 10.1016/j.cej.2020.124081

    6. [6]

      Dan H M, Tao K Y, Hai Y, Liu L, Gong Y. (Co, Mn) -doped NiSe2-diethylenetriamine (dien) nanosheets and (Co, Mn, Sn)-doped NiSe2 nanowires for high performance supercapacitors: Compositional/morphological evolution and (Co, Mn) -induced electron transfer[J]. Nanoscale, 2019,11(36):16810-16827. doi: 10.1039/C9NR04478G

    7. [7]

      Miao C X, Xu P P, Zhao J, Zhu K, Cheng K, Ye K, Yan J, Cao D X, Wang G L, Zhang X F. Binder-free hierarchical urchin-like manganesecobalt selenide with high electrochemical energy storage performance[J]. ACS Appl. Energy Mater., 2019,2(5):3595-3604. doi: 10.1021/acsaem.9b00338

    8. [8]

      Quan L, Liu T Q, Yi M J, Chen Q D, Cai D P, Zhan H B. Construction of hierarchical nickel cobalt selenide complex hollow spheres for pseudocapacitors with enhanced performance[J]. Electrochim. Acta, 2018,281:109-116. doi: 10.1016/j.electacta.2018.05.100

    9. [9]

      Miao C X, Zhou C L, Wang H E, Zhu K, Ye K, Wang Q, Yan J, Cao D X, Li N, Wang G L. Hollow Co-Mo -Se nanosheet arrays derived from metal-organic framework for high -performance supercapacitors[J]. J. Power Sources, 2021,490229532. doi: 10.1016/j.jpowsour.2021.229532

    10. [10]

      Ameri B, Mohammadi Z A, Hosseiny D S S. Metal -organic -framework derived hollow manganese nickel selenide spheres confined with nanosheets on nickel foam for hybrid supercapacitors[J]. Dalton Trans., 2021,50(24):8372-8384. doi: 10.1039/D1DT01215K

    11. [11]

      Du W, Zong Q, Zhan J H, Yang H, Zhang Q L. Tailoring Mo-doped Nicop grown on (Ni, Co)Se2 nanoarrays for asymmetric supercapacitor with enhanced electrochemical performance[J]. ACS Appl. Energy Mater., 2021,4(7):6667-6677. doi: 10.1021/acsaem.1c00747

    12. [12]

      Heiba Z K, Farag N M, El-naggar A M, Abdellatief M, Aldhafiri A M, Mohamed M B. Effect of Mo-doping on the structure, magnetic and optical characteristics of nano CuCo2O4[J]. J. Mater. Res. Technol., 2021,10:832-839. doi: 10.1016/j.jmrt.2020.12.056

    13. [13]

      Li Q, Guo H, Xue R, Wang M Y, Xu M N, Yang W H, Zhang J Y, Yang W. Self-assembled Mo doped Ni-MOF nanosheets based electrode material for high performance battery-supercapacitor hybrid device[J]. Int. J. Hydrog. Energy, 2020,45(41):20820-20831. doi: 10.1016/j.ijhydene.2020.05.143

    14. [14]

      Xiong S S, Weng S T, Tang Y, Qian L, Xu Y Q, Li X F, Lin H J, Xu Y C, Jiao Y, Chen J R. Mo-doped Co3O4 ultrathin nanosheet arrays anchored on nickel foam as a bi-functional electrode for supercapacitor and overall water splitting[J]. J. Colloid Interface Sci., 2021,602:355-366. doi: 10.1016/j.jcis.2021.06.019

    15. [15]

      Li H S, Xuan H C, Guan Y Y, Zhang G H, Wang R, Liang X H, Xie Z G, Han P D, Wu Y C. Preparation and characterization of three-dimensional Mn-Mo-S composites on rGo/Ni foam for battery-supercapacitor electrode with high-performance[J]. Electrochim. Acta, 2020,345136260. doi: 10.1016/j.electacta.2020.136260

    16. [16]

      Vidhya M. S, Yuvakkumar R, Ravi G, Babu E S, Saravanakumar B, Nasif O, Alharbi S A, Velauthapillai D. Demonstration of 1.5 V asymmetric supercapacitor developed using MnSe2-CoSe2 metal composite[J]. Ceram. Interfaces, 2021,47(8):11786-11792.  

    17. [17]

      Hu X M, Liu S C, Chen Y K, Jiang J B, Cong H S, Tang J B, Sun Y X, Han S, Lin H L. Rational design of flower-like cobalt-manganese-sulfide nanosheets for high performance supercapacitor electrode materials[J]. New J. Chem., 2020,44(27):11786-11795. doi: 10.1039/D0NJ01727B

    18. [18]

      Li Y F, Wu X, Pang L J, Miao Y D, Ye A, Sui Y W, Qi J Q, Wei F X, Meng Q K, He Y Z, Zhan Z Z, Ren Y J, Sun Z. Self-supported NiSe@Ni3S2 core-shell composite on Ni foam for a high-performance asymmetric supercapacitor[J]. Ionics, 2020,26(8):3997-4007. doi: 10.1007/s11581-019-03413-7

    19. [19]

      Deka B K, Hazarika A, Lee S, Kim D Y, Park Y B, Park H W. Triboelectric-nanogenerator -integrated structural supercapacitor based on highly active P-doped branched Cu-Mn selenide nanowires for efficient energy harvesting and storage[J]. Nano Energy, 2020,73104754. doi: 10.1016/j.nanoen.2020.104754

    20. [20]

      Wu S, Hu Q Z, Wu L, Li J, Peng H, Yang Q L. One-step solvothermal synthesis of nickel selenide nanoparticles as the electrode for high-performance supercapacitors[J]. J. Alloy. Compd., 2019,784:347-353. doi: 10.1016/j.jallcom.2019.01.026

    21. [21]

      Guo D X, Zhang Y, Sun W F, Chu D W, Li B N, Tan L C, Ma H Y, Pang H J, Wang X M, Zhang L L. Facile dual -ligand modulation tactic toward nickel-cobalt sulfides/phosphides/selenides as supercapacitor electrodes with long-term durability and electrochemical activity[J]. ACS Appl. Mater. Interfaces, 2019,11(44):41580-41587. doi: 10.1021/acsami.9b11894

    22. [22]

      Lin J H, Wang H H, Yan Y T, Zheng X H, Jia H N, Qi J L, Cao J, Tu J C, Fei W D, Feng J C. Core -branched CoSe2/Ni0.85Se nanotube arrays on Ni foam with remarkable electrochemical performance for hybrid supercapacitors[J]. J. Mater. Chem., 2018,6(39):19151-19158. doi: 10.1039/C8TA08263D

    23. [23]

      Subhadarshini S, Pavitra E, Rama R G S, Chodankar N R, Goswami D K, Han Y K, Huh Y S, Das N C. One-dimensional NiSe-Se hollow nanotubular architecture as a binder-free cathode with enhanced redox reactions for high-performance hybrid supercapacitors[J]. ACS Appl. Mater. Interfaces, 2020,12(26):29302-29315.  

    24. [24]

      Ma F, Lu J H, Pu L Y, Wang W, Dai Y T. Construction of hierarchical cobalt-molybdenum selenide hollow nanospheres architectures for high performance battery-supercapacitor hybrid devices[J]. J. Colloid Interf. Sci., 2020,563:435-446. doi: 10.1016/j.jcis.2019.12.101

    25. [25]

      Shi M M, Zhao M S, Jiao L D, Su Z, Li M, Song X P. Novel Mo -doped nickel sulfide thin sheets decorated with Ni-Co layered double hydroxide sheets as an advanced electrode for aqueous asymmetric super-capacitor battery[J]. J. Power Sources, 2021,509230333. doi: 10.1016/j.jpowsour.2021.230333

    26. [26]

      Zong Q, Zhu Y L, Wang Q Q, Yang H, Zhang Q L, Zhan J H, Du W. Prussian blue analogues anchored P-(Ni, Co)Se2 nanoarrays for high performance all-solid-state supercapacitor[J]. Chem. Eng. J., 2020,392123664. doi: 10.1016/j.cej.2019.123664

    27. [27]

      Yang X, Mao J J, Niu H, Wang Q, Zhu K, Ye K, Wang G, Cao D X, Yan J. NiS 2/MoS2 mixed phases with abundant active edge sites induced by sulfidation and graphene introduction towards high-rate supercapacitors[J]. Chem. Eng. J., 2021,406126713. doi: 10.1016/j.cej.2020.126713

    28. [28]

      Gu Y P, Du W M, Darrat Y, Saleh M, Huang Y X, Zhang Z Y, Wei S H. In situ growth of novel nickel diselenide nanoarrays with high spe-cific capacity as the electrode material of flexible hybrid supercapac-itors[J]. Appl. Nanosci., 2019,10(5):1591-1601. doi: 10.1007/s13204-019-01234-8

    29. [29]

      Liu Y H, Li W L, Chang X W, Chen H, Zheng X L, Bai J B, Ren Z. MoSe2 nanoflakes-decorated vertically aligned carbon nanotube film on nickel foam as a binder-free supercapacitor electrode with high rate capability[J]. J. Colloid Interface Sci., 2020,562:483-492. doi: 10.1016/j.jcis.2019.11.089

    30. [30]

      Zhao L C, Zhang P, Zhang Y N, Zhang Z, Yang L, Chen Z G. Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors[J]. J. Mater. Sci. Technol., 2020,54:69-76. doi: 10.1016/j.jmst.2020.02.063

    31. [31]

      Tavakoli F, Rezaei B, Taghipour J A R, Ensafi A A. Facile synthesis of yolk-shelled CuCo2Se4 microspheres as a novel electrode material for supercapacitor application[J]. ACS Appl. Mater. Interfaces, 2019,12(1):418-427.  

    32. [32]

      Wang K B, Li Q Q, Ren Z J, Li C, Chu Y, Wang Z K, Zhang M D, Wu H, Zhang Q C. 2D metal-organic frameworks (MOFs) for high-performance batcap hybrid devices[J]. Small, 2020,16(30)2001987. doi: 10.1002/smll.202001987

    33. [33]

      Wang K B, Wang S E, Liu J D, Guo Y X, Mao F F, Wu H, Zhang Q C. Fe-based coordination polymers as battery-type electrodes in semisolid-state battery -supercapacitor hybrid devices[J]. ACS Appl. Mater. Interfaces, 2021,13(13):15315-15323. doi: 10.1021/acsami.1c01339

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    4. [4]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    5. [5]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    6. [6]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    7. [7]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    8. [8]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    9. [9]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    12. [12]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    13. [13]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    17. [17]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    18. [18]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

Metrics
  • PDF Downloads(4)
  • Abstract views(2465)
  • HTML views(190)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return