Citation: Yan-Yan AN, Li-Ping LU, Miao-Li ZHU. One Cd-MOF as a multi-responsive fluorescent probe for sensing Fe(Ⅲ) and Cr(Ⅵ)[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 939-946. doi: 10.11862/CJIC.2023.056 shu

One Cd-MOF as a multi-responsive fluorescent probe for sensing Fe(Ⅲ) and Cr(Ⅵ)

Figures(7)

  • One metal-organic framework [Cd3(L)2(H2O)9]·9H2O (MOF 1), where H3L=5-(((4-carboxyphenyl)oxy)methyl) benzene-1,3-dicarboxylic acid, has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and elemental analysis. MOF 1 exhibits a 2D microporous structure with an accessible volume of 22.4%. Luminescent property studies reveal that MOF 1 can act as a promising luminescent sensor for detecting Fe(Ⅲ) and Cr(Ⅵ) with high selectivities and low detection limits, which are additionally free from the interference of other ions. Moreover, the mechanism of selective quenching was studied by measuring the UV-Vis absorption of the host metal-organic framework and the target analyte ions. The fluorescence resonance energy transfer is the possible mechanism involved in the quenching of the fluorescence intensity.
  • 加载中
    1. [1]

      Li L, Lin R B, Krishna R, Li H, Xiang S, Wu H, Li J, Zhou W, Chen B. Ethane/ethylene separation in a metal-organic framework with ironperoxo sites[J]. Science, 2018,362:443-446. doi: 10.1126/science.aat0586

    2. [2]

      Liu X P, Fan W D, Zhang M H, Li G X, Liu H J, Sun D F, Zhao L M, Zhu H Y, Guo W Y. Enhancing light hydrocarbon storage and separation through introducing Lewis basic nitrogen sites within a carboxylate-decorated copper-organic framework[J]. Mater. Chem. Front., 2018,2:1146-1154. doi: 10.1039/C8QM00105G

    3. [3]

      Oar-Arteta L, Wezendonk T, Sun X H, Kapteijn F, Gascon J. Metal organic frameworks as precursors for the manufacture of advanced catalytic materials[J]. Mater. Chem. Front., 2017,1:1709-1745. doi: 10.1039/C7QM00007C

    4. [4]

      Sun Y, Zhang N, Guan Q L, Liu C H, Li B, Zhang K Y, Li G H, Xing Y H, Bai F Y, Sun L X. Sensing of Fe3+ and Cr2O72- in water and white light: Synthesis characterization and fluorescence properties of a crystalline bismuth-1,3,5-benzenetricarboxylic acid framework[J]. Cryst. Growth Des., 2019,19:7217-7229. doi: 10.1021/acs.cgd.9b01098

    5. [5]

      ZHANG Q, ZHANG G W, CHENG J Y, LU W X, WANG P. Synthesis, crystal structure and fluorescence emission properties of Cd(Ⅱ) and Pb(Ⅱ) MOFs based on hydroxyethoxy isophthalate acid[J]. Chinese J. Inorg. Chem., 2020,36(11):2063-2070.  

    6. [6]

      Goswami S, Leitus G, Tripuramallu B K, Goldberg I. Mn and Co coordination polymers showing field-dependent magnetism and slow magnetic relaxation behavior[J]. Cryst. Growth Des., 2017,17:4393-4404. doi: 10.1021/acs.cgd.7b00696

    7. [7]

      Feng C, Lv C P, Zhao H, Li Z Q, Xie W N, Sun L N, Wang Y C. Structural elucidation and supercapacitive performance on a Mn(Ⅱ)-based MOF[J]. Cryst. Growth Des., 2020,20:5682-5687. doi: 10.1021/acs.cgd.9b01013

    8. [8]

      Lin X M, Niu J L, Chen D N, Lu Y N, Zhang G, Cai Y P. Four metalorganic frameworks based on a semirigid tripodal ligand and different secondary building units: Structures and electrochemical performance[J]. CrystEngComm, 2016,18:6841-6848. doi: 10.1039/C6CE01068G

    9. [9]

      Wang Q S, Li J J, Zhang M N, Li X. A luminescent Eu(Ⅲ)-based metalorganic framework as a highly effective sensor for cation and anion detections[J]. Sens. Actuators B-Chem., 2018,258:358-364. doi: 10.1016/j.snb.2017.11.075

    10. [10]

      Diamantis S A, Margariti A, Pournara A D, Papaefstathiou G S, Manos M J, Lazarides T. Luminescent metal-organic frameworks as chemical sensors: Common pitfalls and proposed best practices[J]. Inorg. Chem. Front., 2018,5:1493-1511.

    11. [11]

      Fard Z H, Kalinovskyy Y, Spasyuk D M, Blight B A, Shimizu G K. Alkaline-earth phosphonate MOFs with reversible hydration-dependent fluorescence[J]. Chem. Commun., 2016,52:12865-12868. doi: 10.1039/C6CC06490F

    12. [12]

      Cao Y Y, Guo X F, Wang H. High sensitive luminescence metalorganic framework sensor for hydrogen sulfide in aqueous solution: A trial of novel turn-on mechanism[J]. Sens. Actuators B-Chem., 2017,243:8-13. doi: 10.1016/j.snb.2016.11.085

    13. [13]

      Wang X N, Li J L, Jiang C G, Hu P, Li B, Zhang T L, Zhou H C. An efficient strategy for improving the luminescent sensing performance of a terbium(Ⅲ) metal-organic framework towards multiple substances[J]. Chem. Commun., 2018,54:13271-13274. doi: 10.1039/C8CC07369D

    14. [14]

      Wang G Y, Song C, Kong D M, Ruan W J, Chang Z, Li Y. Two luminescent metal-organic frameworks for the sensing of nitroaromatic explosives and DNA strands[J]. J. Mater. Chem. A, 2014,2:2213-2220. doi: 10.1039/C3TA14199C

    15. [15]

      Chen L L, Xu H, Wang L, Li Y, Tian X K. Portable ratiometric probe based on the use of europium(Ⅲ) coordination polymers doped with carbon dots for visual fluorometric determination of oxytetracy[J]. Microchim. Acta, 2020,187125. doi: 10.1007/s00604-019-4104-3

    16. [16]

      Cook T R, Zheng Y R, Stang P J. Metal-organic frameworks and selfassembled supramolecular coordination complexes: Comparing and contrasting the design synthesis and functionality of metal-organic materials[J]. Chem. Rev., 2013,113:734-777. doi: 10.1021/cr3002824

    17. [17]

      LI Y L, ZHAO Y, SUN W Y. Two Zn and Cd metal-organic frameworks with mixed ligands: Synthesis, structure, sorption and luminescent properties[J]. Chinese J. Inorg. Chem., 2020,36(6):1176-1184.  

    18. [18]

      Acharyya K, Mukherjee P S. A fluorescent organic cage for picric acid detection[J]. Chem. Commun., 2014,50:15788-15791. doi: 10.1039/C4CC06225F

    19. [19]

      Wu J X, Yan B. A dual-emission probe to detect moisture and water in organic solvents based on green-Tb3+ post-coordinated metalorganic frameworks with red carbon dots[J]. Dalton Trans., 2017,46:7098-7105. doi: 10.1039/C7DT01352C

    20. [20]

      Zhou J M, Shi W, Li H M, Li H, Cheng P. Experimental studies and mechanism analysis of high-sensitivity luminescent sensing of pollutional small molecules and ions in Ln4O4 cluster based microporous metal-organic frameworks[J]. J. Phys. Chem. C, 2014,118:416-426. doi: 10.1021/jp4097502

    21. [21]

      Cheung W, Patel M, Ma Y F, Chen Y, Xie Q Q, Lockard J V, Gao Y, He H X. π-Plasmon absorption of carbon nanotubes for the selective and sensitive detection of Fe3+ ions[J]. Chem. Sci., 2016,7:5192-5199. doi: 10.1039/C6SC00006A

    22. [22]

      Li M F, Fang H B, Ji Y F, Chen Y C, He W J, Guo Z J. Rational design of ratiometric Fe3+ fluorescent probes based on FRET mechanism[J]. Chem. Res. Chin. Univ., 2022,38:67-74. doi: 10.1007/s40242-021-1398-6

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    3. [3]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    4. [4]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    5. [5]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    6. [6]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    7. [7]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    8. [8]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    9. [9]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    10. [10]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    11. [11]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    12. [12]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    13. [13]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    16. [16]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    17. [17]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

Metrics
  • PDF Downloads(6)
  • Abstract views(1344)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return