Crystal structure, slow magnetic relaxation behavior and conversion CO2 of a tetranuclear Ho(Ⅲ)-based complex
- Corresponding author: Wen-Min WANG, wangwenmin0506@126.com Guo-Li YANG, ygl@jzxy.edu.cn Ming FANG, fangmingchem@163.com
Citation:
Wen-Min WANG, Na QIAO, Shan-Shan DONG, Ying CHEN, Xiao-Yan XIN, Guo-Li YANG, Ming FANG. Crystal structure, slow magnetic relaxation behavior and conversion CO2 of a tetranuclear Ho(Ⅲ)-based complex[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(5): 917-927.
doi:
10.11862/CJIC.2023.053
Zheng X Y, Kong X J, Zheng Z, Long L S, Zheng L S. High-nuclearity lanthanide-containing clusters as potential molecular magnetic coolers[J]. Acc. Chem. Res., 2018,51:517-525. doi: 10.1021/acs.accounts.7b00579
Zheng X Y, Xie J, Kong X J, Long L S, Zheng L S. Recent advances in the assembly of high-nuclearity lanthanide clusters[J]. Coord. Chem. Rev., 2019,378:222-236. doi: 10.1016/j.ccr.2017.10.023
Ding Y S, Chilton N F, Winpenny R E P. On approaching the limit of molecular magnetic anisotropy: A near-perfect pentagonal bipyramidal dysprosium(Ⅲ) single-molecule magnet[J]. Angew. Chem. Int. Ed., 2016,55:16071-16074. doi: 10.1002/anie.201609685
Peng J B, Kong X J, Zhang Q C, Orendáč M, Prokleška J, Ren Y P, Long L S, Zheng Z, Zheng L S. Beauty, symmetry, and magnetocaloric effect-four-shell keplerates with 104 lanthanide atoms[J]. J. Am. Chem. Soc., 2014,136:17938-17941. doi: 10.1021/ja5107749
Dong J, Cui P, Shi P F, Cheng P, Zhao B. Ultrastrong alkali-resisting lanthanide-zeolites assembled by[Ln60] nanocages[J]. J. Am. Chem. Soc., 2015,137:15988-15991. doi: 10.1021/jacs.5b10000
Zhu Z H, Peng J M, Wang H L, Zou H H, Liang F P. Assembly mechanism and heavy metal ion sensing of cage-shaped lanthanide nanoclusters[J]. Cell Rep. Phys. Sci., 2020,1(8)100165. doi: 10.1016/j.xcrp.2020.100165
Liu J, Chen Y C, Liu J L. A stable pentagonal bipyramidal Dy(Ⅲ) single-ion magnet with a record magnetization reversal barrier over 1000 K[J]. J. Am. Chem. Soc., 2016,138:5441-5450. doi: 10.1021/jacs.6b02638
Tang J K, Hewitt I, Madhu N T, Chastanet G, Wernsdorfer W, Anson C E, Benell C, Sessoli R, Powell A K. Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states[J]. Angew. Chem. Int. Ed., 2006,45:1729-1733. doi: 10.1002/anie.200503564
Hewitt I J, Tang J K, Madhu N T, Anson C E, Lan Y H, Luzon J, Etienne M, Sessoli R, Powell A K. Coupling Dy3 triangles enhances their slow magnetic relaxation[J]. Angew. Chem. Int. Ed., 2010,49:6352-6356. doi: 10.1002/anie.201002691
Guo Y N, Xu G F, Gamez P, Zhao L, Lin S Y, Deng R P, Tang J K, Zhang H J. Two-step relaxation in a linear tetranuclear dysprosium(Ⅲ) aggregate showing single-molecule magnet behavior[J]. J. Am. Chem. Soc., 2010,132:8538-8539. doi: 10.1021/ja103018m
Liu J L, Guo F S, Meng Z S, Zheng Y Z, Leng J D, Tong M L, Ungur L, Chibotaru L F, Heroux K J, Hendrickson D N. Symmetry related[DyⅢ6MnⅢ12] cores with different magnetic anisotropies[J]. Chem. Sci., 2011,2:1268-1272. doi: 10.1039/c1sc00166c
Wang W M, Wu Z L, Cui J Z. Molecular assemblies from linear-shaped Ln4 clusters to Ln8 clusters using different β-diketonates: Disparate magnetocaloric effects and single-molecule magnet behaviors[J]. Dalton Trans., 2021,50:12931-12943. doi: 10.1039/D1DT01344K
Wang W M, He L Y, Wang X X, Shi Y, Wu Z L, Cui J Z. Linear-shaped LnⅢ4 and LnⅢ6 clusters constructed by a polydentate Schiff base ligand and a β-diketone co-ligand: Structures, fluorescence properties, magnetic refrigeration and single-molecule magnet behavior[J]. Dalton Trans., 2019,48:16744-16755. doi: 10.1039/C9DT03478A
Wang W M, Kang X M, Shen H Y, Wu Z L, Gao H L, Cui J Z. Modulating single-molecule magnet behavior towards multiple magnetic relaxation processes through structural variation in Dy4 complexes[J]. Inorg. Chem. Front., 2018,5:1876-1885. doi: 10.1039/C8QI00214B
Wang W M, Wu Z L, Zhang Y X, Wei H Y, Gao H L, Cui J Z. Self-assembly of tetra-nuclear lanthanide complexes via atmospheric CO2 fixation: Interesting solvent-induced structures and magnetic relaxation conversions[J]. Inorg. Chem. Front., 2018,5:2346-2354. doi: 10.1039/C8QI00573G
Wang W M, Yue R X, Gao Y, Wang M J, Hao S S, Shi X Y, Kang X M, Wu Z L. Large magnetocaloric effect and remarkable single-molecule-magnet behavior in triangle-assembled LnⅢ6 complexes[J]. New J. Chem., 2019,43:16639-16646. doi: 10.1039/C9NJ03921J
Qiao N, Xin X Y, Guan X F, Zhang C X, Wang W M. Self-assembly bifunctional tetranuclear Ln2Ni2 clusters: Magnetic behavior and highly efficient converting CO2 under mild conditions[J]. Inorg. Chem., 2022,61:15098-15107. doi: 10.1021/acs.inorgchem.2c02180
Wang W M, Xin X Y, Qiao N, Wu Z L, Li L, Zou J Y. Self-assembly of octanuclear Ln(Ⅲ)-based clusters: Their large magnetocaloric effects and highly efficient conversion of CO2[J]. Dalton Trans., 2022,51:13957-13969. doi: 10.1039/D2DT01892F
Wang L, Zhang G, Kodama K. An efficient metal- and solvent-free organocatalytic system for chemical fixation of CO2 into cyclic carbonates under mild conditions[J]. Green Chem., 2016,18:1229-1233. doi: 10.1039/C5GC02697K
Castro-Osma J A, North M, Wu X. Development of a halide-free aluminum-based catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide[J]. Chem.-Eur. J., 2014,20:15005-15008. doi: 10.1002/chem.201404117
Wang W M, Qiao N, Xin X Y, Wu Z L, Cui J Z. Octanuclear Ln(Ⅲ)-based clusters assembled by a polydentate Schiff base ligand and a β-diketone co-Ligand: efficient conversion of CO2 to cyclic carbonates and large magnetocaloric effect[J]. Cryst. Growth Des., 2023,23:87-95. doi: 10.1021/acs.cgd.2c00746
Gu A L, Zhang Y X, Wu Z L, Cui H Y, Hu T D, Zhao B. Highly efficient conversion of propargylic alcohols and propargylic amines with CO2 activated by noble-metal-free catalyst Cu2O@ZIF-8[J]. Angew. Chem. Int. Ed., 2022,61e202114817.
Tamura M, Honda M, Nakagawa Y. Direct conversion of CO2 with diols, amino alcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts[J]. J. Chem. Technol. Biotechnol., 2014,89:19-33. doi: 10.1002/jctb.4209
Xiao L F, Li F W, Peng J J. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides[J]. J. Mol. Catal. A: Chem., 2006,253:265-269. doi: 10.1016/j.molcata.2006.03.047
Wang M Y, Song Q W, Ma R. Efficient conversion of carbon dioxide at atmospheric pressure to 2-oxazolidinones promoted by bifunctional Cu(Ⅱ)-substituted polyoxometalate-based ionic liquids[J]. Green Chem., 2016,18:282-287. doi: 10.1039/C5GC02311D
Hu J, Ma J, Zhu Q. Zinc(Ⅱ)-catalyzed reactions of carbon dioxide and propargylic alcohols to carbonates at room temperature[J]. Green Chem., 2016,18:382-385. doi: 10.1039/C5GC01870F
Ma R, He L N, Zhou Y B. An efficient and recyclable tetra oxo-coordinatedZinc catalyst for the cycloaddition of epoxides with carbon dioxide at atmospheric pressure[J]. Green Chem., 2016,18:226-231. doi: 10.1039/C5GC01826A
Ema T, Miyazaki Y, Taniguchi T. Robust porphyrin catalysts immobilized on biogenous iron oxide for the repetitive conversions of epoxides and CO2 into cyclic carbonates[J]. Green Chem., 2013,15:2485-2492. doi: 10.1039/c3gc41055b
Sun J, Fujita S I, Zhao F. Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions[J]. Green Chem., 2004,6:613-616. doi: 10.1039/b413229g
Whiteoak C J, Kielland N, Laserna V. A powerful aluminum catalyst for the synthesis of highly functional organic carbonates[J]. J. Am. Chem. Soc., 2013,135:1228-1231. doi: 10.1021/ja311053h
Song T Q, Dong J, Yang A F, Che X J, Gao H L, Cui J Z, Zhao B. Wheel-like Ln18 cluster organic frameworks for magnetic refrigeration and conversion of CO2[J]. Inorg. Chem., 2018,57:3144-3150. doi: 10.1021/acs.inorgchem.7b03142
Dong J, Xu H, Hou S L, Wu Z L, Zhao B. Metal-organic frameworks with Tb4 clusters as nodes: Luminescent detection of chromium(Ⅵ) and chemical fixation of CO2[J]. Inorg. Chem., 2017,56:6244-6250. doi: 10.1021/acs.inorgchem.7b00323
Yang H, Gao G S, Chen W M. Self-assembly of tetranuclear 3d-4f helicates as highly efficient catalysts for CO2 cycloaddition reactions under mild conditions[J]. Dalton Trans., 2020,49:10270-10277. doi: 10.1039/D0DT01743D
Katagiri S, Tsukahara Y, Hasegawa Y, Wada Y. Energy-transfer mechanism in photoluminescent terbium(Ⅲ) complexes causing their temperature-dependence[J]. Bull. Chem. Soc. Jpn., 2007,80:1492-1503. doi: 10.1246/bcsj.80.1492
Wang W M, Wang M J, Hao S S, Shen Q Y, Wang M L, Liu Q L, Guan X F, Zhang X T, Wu Z L. 'Windmill'-shaped LnⅢ4 (LnⅢ =Gd and Dy) clusters: Magnetocaloric effect and single-molecule-magnet behavior[J]. New J. Chem., 2020,44:4631-4638. doi: 10.1039/C9NJ05317D
Wang W M, Zhang H X, Wang S Y, Shen H Y, Gao H L, Cui J Z, Zhao B. Ligand field affected single-molecule magnet behavior of lanthanide(Ⅲ) dinuclear complexes with an 8-hydroxyquinoline Schiff base derivative as bridging ligand[J]. Inorg. Chem., 2015,54:10610-10622. doi: 10.1021/acs.inorgchem.5b01404
Wang W M, Zhang L, Li X Z, He L Y, Wang X X, Shi Y, Wang J, Dong J, Wu Z L. Structures, fluorescence properties and magnetic properties of a series of rhombus-shaped LnⅢ4 clusters: Magnetocaloric effect and single-molecule-magnet behavior[J]. New J. Chem., 2019,43:12941-12949. doi: 10.1039/C9NJ02872B
Wang W M, Gao Y, Yue R X, Qiao N, Wang D T, Shi Y, Zhang H, Cui J Z. Construction of a family of Ln3 clusters using multidentate Schiff base and β-diketonate ligands: Fluorescence properties, magnetocaloric effect and slow magnetic relaxation[J]. New J. Chem., 2020,44:9230-9237. doi: 10.1039/D0NJ01172J
Wang W M, Li X Z, Zhang L, Chen J L, Wang J H, Wu Z L, Cui J Z. A series of[2×2] square grid LnⅢ4 clusters: A large magnetocaloric effect and single-molecule-magnet behavior[J]. New J. Chem., 2019,43:7419-7426. doi: 10.1039/C8NJ04454F
Yao M X, Cai L Z, Deng X W, Zhang W, Liu S J, Cai X M. Self-assembly of rare octanuclear quad(double-stranded) cluster helicates showing slow magnetic relaxation and the magnetocaloric Effect[J]. New J. Chem., 2018,42:17652-17658. doi: 10.1039/C8NJ04169E
Ma X F, Wang H L, Zhu Z H, Li B, Mo K Q, Zou H H, Liang F P. Formation of nanocomplex {Dy12} containing Dy-exclusive vertex-sharing[Dy4(μ3-OH)4] cubanes via simultaneous multi-template guided and step-by-step assembly[J]. Dalton Trans., 2019,48:11338-11344. doi: 10.1039/C9DT01454C
Dinca A S, Mindru A, Dragancea D, Tiseanu C, Shova S, Cornia S, Carrella L M, Rentschler E, Affronte M, Andruh M. Aggregation of[LnⅢ12] clusters by the dianion of 3-formyl salicylic acid, synthesis, crystal structures, magnetic and luminescence properties[J]. Dalton Trans., 2019,48:1700-1708. doi: 10.1039/C8DT04602F
Wang H L, Ma X F, Peng J M, Zhu Z H, Li B, Zou H H, Liang F P. Tracking the stepwise formation of the dysprosium cluster (Dy10) with multiple relaxation behavior[J]. Inorg. Chem., 2019,58:9169-9174. doi: 10.1021/acs.inorgchem.9b00760
Lu J J, Montigaud V, Cador O, Wu J F, Zhao L, Li X L, Guo M, Guennic B L, Tang J K. Lanthanide(Ⅲ) hexanuclear circular helicates: Slow magnetic relaxation, toroidal arrangement of magnetic moments, and magnetocaloric effects[J]. Inorg. Chem., 2019,58:11903-11911. doi: 10.1021/acs.inorgchem.9b01068
Wu J F, Li X L, Zhao L, Guo M, Tang J K. Enhancement of magnetocaloric effect through fixation of carbon dioxide: Molecular assembly from Ln4 to Ln4 cluster pairs[J]. Inorg. Chem., 2017,56:4104-4111. doi: 10.1021/acs.inorgchem.7b00094
Li L F, Kuang W W, Li Y M, Zhu L L, Xu Y, Yang P P. A series of new octanuclear Ln8 clusters: Magnetic studies reveal a significant cryogenic magnetocaloric effect and slow magnetic relaxation[J]. New J. Chem., 2019,43:1617-1625. doi: 10.1039/C8NJ04231D
Shi Y, Tang B, Jiang X L, Jiao Y E, Xu H, Zhao B. Highly effective CS2 conversion with aziridines catalyzed by novel [Dy24] nano-cages in MOFs under mild conditions[J]. J. Mater. Chem. A, 2022,10:4889-4894. doi: 10.1039/D1TA10522A
Hou W, Wang G, Wu X J, Sun S Y, Zhao C Y, Liu W S, Pan F X. Lanthanide clusters as highly efficient catalysts regarding carbon dioxide activation[J]. New J. Chem., 2020,44:5019-5022. doi: 10.1039/C9NJ05831A
Zhang R L, Wang L, Xu C, Yang H, Chen W M, Gao G S, Liu W S. New lanthanide(Ⅲ) coordination polymers: Synthesis, structural features, and catalytic activity in CO2 fixations[J]. Dalton Trans., 2018,47:7159-7165. doi: 10.1039/C8DT01292J
Xu C, Liu Y, Wang L, Ma J X, Yang L Z, Pan F X, Kirillov A M, Liu W S. New lanthanide(Ⅲ) coordination polymers: Synthesis, structural features, and catalytic activity in CO2 fixation[J]. Dalton Trans., 2017,46:16426-16431. doi: 10.1039/C7DT03574H
Wang L, Xu C, Han Q X, Tang X L, Zhou P P, Zhang R L, Gao G S, Xu B H, Qin W W, Liu W S. Ambient chemical fixation of CO2 using a highly efficient heterometallic helicate catalyst system[J]. Chem. Commun., 2018,54:2212-2215. doi: 10.1039/C7CC09092G
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Xiaoling WANG , Hongwu ZHANG , Daofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
Huirong Chen , Yingzhi He , Yan Han , Jianbo Hu , Jiantang Li , Yunjia Jiang , Basem Keshta , Lingyao Wang , Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508
Zhaodong WANG . In situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268
Hongdao LI , Shengjian ZHANG , Hongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411
Zhao-Bo Hu , Ling-Ao Gui , Long-He Li , Tong-Tong Xiao , Adam T. Hand , Pagnareach Tin , Mykhaylo Ozerov , Yan Peng , Zhongwen Ouyang , Zhenxing Wang , Zi-Ling Xue , You Song . CoⅡ single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Guilong Li , Wenbo Ma , Jialing Zhou , Caiqin Wu , Chenling Yao , Huan Zeng , Jian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
Longsheng Zhan , Yuchao Wang , Mengjie Liu , Xin Zhao , Danni Deng , Xinran Zheng , Jiabi Jiang , Xiang Xiong , Yongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
Hydrogen atoms are omitted for clarity; Symmetry code: a: -x+1, -y, -z+1
Solid line resulted from fitting the Curie-Weiss law