Citation: Si-Jia YI, Xia HE, Shu-Qi GU, Zhe-Yu DENG, Jia-Hong LI, Jiang-Xi YU, Fu-Xing ZHANG, Xiao-Ming ZHU. Microwave solvothermal syntheses, crystal structures, and in vitro antitumor activity of three organotin 2, 2′-biphenyl dicarboxylate[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 874-882. doi: 10.11862/CJIC.2023.050 shu

Microwave solvothermal syntheses, crystal structures, and in vitro antitumor activity of three organotin 2, 2′-biphenyl dicarboxylate

  • Corresponding author: Xiao-Ming ZHU, zxmhunhy@163.com
  • Received Date: 24 November 2022
    Revised Date: 24 March 2023

Figures(5)

  • Three organotin 2, 2′-biphenyl dicarboxylates, namely [((PhC(Me)2CH2)3Sn)2(DPA)] (1), [(Cy)3Sn(DPA)]n (2), and [(n-Bu)2Sn(DPA)]n (3), have been prepared by the microwave-assisted solvothermal reaction of 2, 2′-biphenyl dicarboxylic acid (H2DPA) with bis(tri(2-methyl-2-phenyl)propyl)tin oxide, tricyclohexyltin hydroxide, and dibutyltin oxide, respectively. Complexes 1-3 have been characterized by IR, NMR, elemental analysis, and thermogravimetry, and the crystal structures have been determined by X-ray diffraction. The crystals of 1-3 belong to the monoclinic system. Due to the influence of alkyl group steric, the steric resistance of the group for PhC(Me)2CH2 (1) > Cy (2) > n-Bu (3), the coordination number of tin atoms of complexes 1-3 increases successively, and the coordination number of tin atoms are 4, 5, and 6, respectively. Complex 1 has a binuclear structure, and complexes 2 and 3 are 1D chain structures. The antitumor activity shows that complexes 1-3 have higher activities than cisplatin in Human lung cancer cells (NCI-H460), human breast adenocarcinoma cells (MCF-7), and human liver cancer cells (HepG2) line in vitro.
  • 加载中
    1. [1]

      Sharps M C, Frederick R T, Javitz M L, Herman G S, Johnson D W, Hutchison J E. Organotin carboxylate reagents for nanopatterning: Chemical transformations during direct-write electron beam processes[J]. Chem. Mater., 2019,31(13):4840-4850. doi: 10.1021/acs.chemmater.9b01440

    2. [2]

      Sirajuddin M, Tariq M, Ali S. Organotin(Ⅳ) carboxylates as an effective catalyst for the conversion of corn oil into biodiesel[J]. J. Organomet. Chem., 2015,779:30-38. doi: 10.1016/j.jorganchem.2014.12.019

    3. [3]

      Iqbal M, Ali S, Muhammad N, Parvez M, Langer P, Villinger A. Synthesis, characterization, crystal structures and electrochemical studies of organotin(Ⅳ) carboxylates[J]. J. Organomet. Chem., 2013,723:214-223. doi: 10.1016/j.jorganchem.2012.10.006

    4. [4]

      Amir M K, Khan S, Rehman Z, Shah A, Butler I S. Anticancer activity of organotin(Ⅳ) carboxylates[J]. Inorg. Chim. Acta, 2014,423:14-25. doi: 10.1016/j.ica.2014.07.053

    5. [5]

      Sharma S, Agnihotri N, Kumar K, Sihag S, Randhawa V, Kaur R, Singh R, Kaur V. Glutamine conjugated organotin(Ⅳ) Schiff base compounds: Synthesis, structure, and anticancer properties[J]. Appl. Organomet. Chem., 2022,36(2):6521-6540.

    6. [6]

      Tariq M, Khan R, Hussain A, Batool A, Rasool F, Yar M, Ayub K, Sirajuddin M, Ullah F, Ali S, Akhtar A, Kausar S, Altaf A A. Synthesis, characterization, antimicrobial, cytotoxic, DNA-interaction, molecular docking and DFT studies of novel di- and tri-organotin(Ⅳ) carboxylates using 3-(3-nitrophenyl)2-methylpropenoic acid[J]. J. Coord. Chem., 2021,74(14):2407-2426. doi: 10.1080/00958972.2021.1964019

    7. [7]

      KUANG D Z, ZHU X M, FENG Y L, ZHANG F X, YU J X, JIANG W J, TAN Y X, ZHANG Z J. Syntheses, crystal structures and biological activities of bis(tricyclohexyltin)dicarboxylates with macrocyclic building 2D network[J]. Chinese J. Inorg. Chem., 2015,31(10):2044-2050. doi: 10.11862/CJIC.2015.268

    8. [8]

      Su H Q, Zhang R F, Gao Q, Wang J, Li Q L, Du X M, Ru J, Zhang Q F, Ma C L. Five organotin complexes derived from hydroxycinnamic acid ligands: Synthesis, structure, in vitro cytostatic activity and binding interaction with BSA[J]. J. Mol. Struct., 2022,1247131290. doi: 10.1016/j.molstruc.2021.131290

    9. [9]

      Chen X, Wang H, Wang J J, Zhao L, Li C B, Liu C L. Synthesis, structures, spectroscopies and properties studies of two organotin(Ⅳ) carboxylates with 1, 4-naphthalenedicarboxylic acid[J]. J. Mol. Struct., 2022,1250131738. doi: 10.1016/j.molstruc.2021.131738

    10. [10]

      He L, Gao Y J, Xiao Y H, Chen E X, Luo M B, Li Z H, Lin Q P. Imparting superhydrophobicity to porphyrinic coordination frameworks using organotin[J]. CCS Chem., 2022,4(7):2286-2293. doi: 10.31635/ccschem.021.202101378

    11. [11]

      Yin H D, Hong M, Yang M L, Cui J C. Cyclotrimeric and weakly-bridged cyclotetrameric organotin(Ⅳ) compounds assembled from 5-hydroxyisophthalic acid: Synthesis and structural characterization[J]. J. Mol. Struct., 2010,984(1/2/3):383-388.

    12. [12]

      Cantón-Diaz A, Muñoz-Floresa B M, Berrones-Reyes J, Moggio I, Arias E, Turlakov G, Santillán R, Jiménez-Pérez V M. Organotin compounds bearing C3-symmetric Schiff base: Microwave-assisted multicomponent synthesis and their photophysical properties[J]. J. Organomet. Chem., 2021,954-955122111. doi: 10.1016/j.jorganchem.2021.122111

    13. [13]

      López-Espejel M, Gómez-Treviño A, Muñoz-Flores B M, Treto-Suarez M A, Schott E, Páez-Hernández D, Zarate X, Jiménez-Pérez V M. Organotin Schiff bases as halofluorochromic dyes: Green synthesis, chemio-photophysical characterization, DFT, and their fluorescent bioimaging in vitro[J]. J. Mater. Chem. B, 2021,9(37):7698-7712. doi: 10.1039/D1TB01405F

    14. [14]

      FENG Y L, KUANG D Z, ZHANG F X, YU J X, JIANG W J, ZHU X M. Two di-n-butyltin carboxylates with a Sn4O4 ladder-like framework: Microwave solvothermal syntheses, structures and in vitro antitumor activities[J]. Chinese J. Inorg. Chem., 2017,33(5):830-836. doi: 10.11862/CJIC.2017.107

    15. [15]

      YANG C L, FENG Y L, ZHANG F X, YU J X, JIANG W J, KUANG D Z, YANG N F. Microwave-solvent thermal syntheses, crystal structures and herbicidal activity of bis(3, 5-di-t-butylsalicylaldehyde) carbohydrazide dibutyltin complexes[J]. Chinese J. Inorg. Chem., 2017,33(8):1397-1402. doi: 10.11862/CJIC.2017.175

    16. [16]

      JIANG W J, KUANG D Z, FENG Y L, YU J X, ZHANG F X, ZHU X M. Microwave-assisted synthesis, characterization and fluorescence properties of the salicylaldehyde-o-aminophenol Schiff base with appended donor functionality and their n-butyltin(Ⅳ) complexes[J]. Chin. J. Org. Chem., 2014,34(11):2288-2295.

    17. [17]

      Liu X J, Zhang Y H, Chang Z, Li A L, Tian D, Yao Z Q, Jia Y Y, Bu X H. A water-stable metal-organic framework with a double-helical structure for fluorescent sensing[J]. Inorg. Chem., 2016,55(15):7326-7328. doi: 10.1021/acs.inorgchem.6b00935

    18. [18]

      Song Y, Fan R Q, Fan J Z, Xing K, Du X, Wang P, Yang Y L. Highly sensitive and selective fluorescent probe for Hg2+ in Ag(Ⅰ)/Cu(Ⅱ) 3D supramolecular architecture based on noncovalent interactions[J]. Dalton Trans., 2016,45(41):16422-16432. doi: 10.1039/C6DT02694J

    19. [19]

      Zhang B J, Wang C J, Qiu G M, Huang S, Zhou X L, Weng J, Wang Y Y. Polycarboxylate anions effect on the structures of a series of transition metal-based coordination polymers: Syntheses, crystal structures and bioactivities[J]. Inorg. Chim. Acta, 2013,397:48-59. doi: 10.1016/j.ica.2012.11.018

    20. [20]

      WANG C C, SONG Y X, WANG Y L, WANG P. Syntheses, crystal structure and optical property of two bis-ligand silver(Ⅰ) complexes containing diphenic acid and bidentate N-donor ligands[J]. Chinese J. Inorg. Chem., 2011,27(2):361-366.  

    21. [21]

      Li N Y, Jiang Z D, Wang Y J, Liu L L, Liu D. Crystallographic visualization of a guest-induced solar-driven cycloaddition reaction based on a recyclable nonporous coordination polymer[J]. Inorg. Chem., 2021,60(22):17173-17177. doi: 10.1021/acs.inorgchem.1c02477

    22. [22]

      Thirumurugan A, Pati S K, Green M A, Natarajan S. Observation of tancoite-like chains in a one-dimensional metal-organic polymer[J]. J. Mater. Chem., 2003,13(12):2937-2941. doi: 10.1039/B310778G

    23. [23]

      Wang R H, Hong M C, Luo J H, Cao R, Weng J B. Synthesis and crystal structures of the first two novel dicarboxylate organotin polymers constructed from dimeric tetraorganodistannoxane units[J]. Eur. J. Inorg. Chem., 2002(8):2082-2085.

    24. [24]

      WENG S F. Fourier translation infrared spectroscopy analysis. 2nd ed. Beijing: Chemical Industry Press, 2005: 305-306

    25. [25]

      ZHU X M, KUANG D Z, FENG Y L, ZHANG F X, YU J X, JIANG W J, ZHANG Z J. Syntheses, crystal structures, thermal stability and biological activities of two bis[tri(2-methyl-2-phenyl)propyltin] dicarboxylates (CH2)n[CO2Sn(CH2CMe2Ph3)2(n=5, 6)[J]. Chinese J. Inorg. Chem., 2015,31(7):1373-1379. doi: 10.11862/CJIC.2015.181

    26. [26]

      Ma C L, Sun J S, Zhang R F, Wang D Q. Self-assembled diorganotin(Ⅳ) moieties with 2, 3, 4, 5-tetrafluorobenzoic acid: Syntheses, characterizations and crystal structures[J]. Inorg. Chim. Acta, 2006,359(13):4179-4190.

    27. [27]

      Chandrasekhar V, Thirumoorthi R, Metre R K, Mahanti B. Steric control in the reactions of 3-pyrazolecarboxylic acid with diorganotin dichlorides[J]. J. Organomet. Chem., 2011,696(2):600-606.

    28. [28]

      Molloy K C, Purcell T G, Quill K. Organotin biocides: 1. The structure of triphenyltin acetate[J]. J. Organomet. Chem., 1984,267(3):237-247.

    29. [29]

      Forrester A R, Garden S J, Howie R A, Wardell J L. Structural study of 3-oxypropyltin compounds[J]. J. Chem. Soc. Dalton. Trans., 1992(17):2615-2621.

  • 加载中
    1. [1]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    11. [11]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    12. [12]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    13. [13]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    14. [14]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    15. [15]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    16. [16]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    17. [17]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    18. [18]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    19. [19]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    20. [20]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

Metrics
  • PDF Downloads(1)
  • Abstract views(674)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return