Citation: Shu-Juan ZHENG, Jia-Xin LI, Wen-Shi ZHONG, Wei JIANG, Geng-Shen HU. Preparation and electrochemical performance for supercapacitors of chitosan-based porous carbon materials[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 492-500. doi: 10.11862/CJIC.2023.019 shu

Preparation and electrochemical performance for supercapacitors of chitosan-based porous carbon materials

Figures(7)

  • Nitrogen-containing mesoporous carbon with different specific surface areas and pore volumes were prepared by using colloidal silica spheres as the hard template, chitosan as a carbon precursor, and ZnCl2 as activation agent. The morphology, surface area, and pore structure of the prepared carbons were characterized by different techniques. The influence of the ratio of silica to chitosan and the use of ZnCl2 on the pore volume and surface area of porous carbon materials were explored. It was found that the nitrogen-doped mesoporous carbon (CSi-1.75) without using activation agent showed lowest surface area but the pore volume can reach up to 4.53 cm3·g-1. The carbon (CSi-1.75-Zn) prepared by using ZnCl2 as activation agent, had the larger surface area (1 032 m2·g -1) and the pore volume decreased to 1.99 cm3·g-1 and had more pyridine-nitrogen and pyrrole-nitrogen. In the three electrodes with 6.0 mol·L-1 KOH as the electrolyte, when the current density was 0.5 A·g-1, the specific capacitance of CSi-1.75-Zn can reach 344 F·g -1, while the specific capacitance of CSi-1.75 was only 255 F·g-1. This indicates that the surface area of the carbon material had the greatest impact on the supercapacitive performance. The capacitance contribution analysis results showed that both the double-layer capacitance and pseudo capacitance of CSi-1.75-Zn were improved compared with CSi-1.75, indicating that larger specific surface area and more pyridine-nitrogen and pyrrole-nitrogen are conducive to improving the capacitance of carbon materials.
  • 加载中
    1. [1]

      Chang Q H, Li L M, Sai L M, Shi W Z, Chen Q, Huang L. Interconnected binary carbon hybrids for supercapacitor electrode[J]. Electrochim. Acta, 2017,251:293-300. doi: 10.1016/j.electacta.2017.08.109

    2. [2]

      Luo X Y, Chen Y, Mo Y. A review of charge storage in porous carbonbased supercapacitors[J]. New Carbon Mater., 2021,36(1):49-68. doi: 10.1016/S1872-5805(21)60004-5

    3. [3]

      Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nat. Mater., 2008,7(11):845-854. doi: 10.1038/nmat2297

    4. [4]

      Kang Y J, Chun S J, Lee S S, Kim B Y, Kim J H, Chung H G, Lee S Y, Kim W. All-solidstate flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels[J]. ACS Nano, 2012,6(7):6400-6406. doi: 10.1021/nn301971r

    5. [5]

      Yu Z L, Qin B, Ma Z Y, Huang J, Li S C, Zhao H Y, Li H, Zhu Y B, Wu H A, Yu S H. Hard carbon aerogels: Superelastic hard carbon nanofiber aerogels[J]. Adv. Mater., 2019,31(23)1970168. doi: 10.1002/adma.201970168

    6. [6]

      Chen C M, Zhang Q, Zhao X C, Zhang B S, Kong Q Q, Yang M G, Yang Q H, Wang M Z, Yang Y G, Schlögl R, Su D S. Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage[J]. J. Mater. Chem., 2012,22(28):14076-14084. doi: 10.1039/c2jm31426f

    7. [7]

      Gong C C, Wang X Z, Ma D H, Chen H F, Zhang S S, Liao Z X. Microporous carbon from a biological waste-stiff silkworm for capacitive energy storage[J]. Electrochim. Acta, 2016,220:331-339. doi: 10.1016/j.electacta.2016.10.120

    8. [8]

      Guo D D, Qian J, Xin R R, Zhang Z, Jiang W, Hu G S, Fan M. Facile synthesis of nitrogen-enriched nanoporous carbon materials for high performance supercapacitors[J]. J. Colloid Interface Sci., 2019,538:199-208. doi: 10.1016/j.jcis.2018.11.107

    9. [9]

      Li W Y, Wang T, Guo J, Liu P G, Yin X W, Wu D L. Organic resin based high surface area and N-enriched porous carbon nanosheets for supercapacitors[J]. Appl. Surf. Sci., 2022,59915388.

    10. [10]

      Yu H, Zhang W L, Li T, Zhi L, Dang L Q, Liu Z H, Lei Z B. Capacitive performance of porous carbon nanosheets derived from biomass cornstalk[J]. RSC Adv., 2017,7(2):1067-1074. doi: 10.1039/C6RA25899A

    11. [11]

      Sun F, Gao J H, Pi X X, Wang L J, Yang Y Q, Qu Z B, Wu S H. High performance aqueous supercapacitor based on highly nitrogendoped carbon nanospheres with unimodal mesoporosity[J]. J. Power Sources, 2017,337:189-196. doi: 10.1016/j.jpowsour.2016.10.086

    12. [12]

      Zhang Y, Qu T T, Xiang K, Shen Y, Chen S Y, Xie M J, Guo X F. In situ formation/carbonization of quinone-amine polymers towards hierarchical porous carbon foam with high faradaic activity for energy storage[J]. J. Mater. Chem. A, 2018,6:2353-2359. doi: 10.1039/C7TA09644E

    13. [13]

      Zhang D, Gao H Q, Hua G M, Zhou H T, Wu J C, Zhu B W, Liu C, Yang J H, Chen D. Boosting specific energy and power of carbon-ionic liquid supercapacitors by engineering carbon pore structures[J]. Front. Chem., 2020,8:68-76. doi: 10.3389/fchem.2020.00068

    14. [14]

      Pokrzywinski J, Keum J K, Ruther R E, Self E C, Chi M F, Meyer I H, Littrell K C, Aulakh D, Marble S, Ding J, Wriedt M, Nanda J, Mitlin D. Unrivaled combination of surface area and pore volume in micelle-templated carbon for supercapacitor energy storage[J]. J. Mater. Chem. A, 2017,5(26):13511-13525. doi: 10.1039/C7TA03655H

    15. [15]

      Dong X S, Liu X W, Chen H, Xu X Y, Jiang H C, Gu C L, Li Q, Qiao S L, Zhang X J, Hu Y Q. Hard emplate-assisted N, P-doped multifunctional mesoporous carbon for supercapacitors and hydrogen evolution reaction[J]. J. Mater. Sci., 2021,56(3):2385-2398. doi: 10.1007/s10853-020-05303-0

    16. [16]

      Ling Z, Wang Z Y, Zhang M D, Yu C, Wang G, Dong Y F, Liu S H, Wang Y W, Qiu J S. Sustainable synthesis and assembly of biomassderived B/N Co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Adv. Funct. Mater., 2016,26(1):111-119. doi: 10.1002/adfm.201504004

    17. [17]

      Guo D D, Xin R R, Zhang Z, Jiang W, Hu G S, Fan M H. N-doped hierarchically micro-and mesoporous carbons with superior performance in supercapacitors[J]. Electrochim. Acta, 2018,291:103-113. doi: 10.1016/j.electacta.2018.08.109

    18. [18]

      Yuan M Y, Zhang Y Q, Niu B, Jiang F, Yang X N, Li M. Chitosanderived hybrid porous carbon with the novel tangerine pith-like surface as supercapacitor electrode[J]. J. Mater. Sci., 2019,54(23):14456-14468. doi: 10.1007/s10853-019-03911-z

    19. [19]

      Olejniczak A, Lezanska M, Wloch J, Kucinska A, Lukaszewicz J P. Novel nitrogen-containing mesoporous carbons prepared from chitosan[J]. J. Mater. Chem. A, 2013,1(31):8961-8967. doi: 10.1039/c3ta11337j

    20. [20]

      Yan W, Meng Z H, Zou M Y, Miao H, Ma F X, Yu R, Qiu W, Liu X Y, Lin N B. Neutralization reaction in synthesis of carbon materials for supercapacitors[J]. Chem. Eng. J., 2020,381122547. doi: 10.1016/j.cej.2019.122547

    21. [21]

      Li B W, Hu J C, Xiong H, Xiao Y. Application and properties of microporous carbons activated by ZnCl2: Adsorption behavior and activation mechanism[J]. ACS Omega, 2020,5(16):9398-9407. doi: 10.1021/acsomega.0c00461

    22. [22]

      Kim D K, Bong S, Jin X Z, Seong K D, Hwang M, Kim N D, You N H, Piao Y Z. Facile in situ synthesis of multiple-heteroatom-doped carbons derived from polyimide precursors for flexible all-solid-state supercapacitors[J]. ACS Appl. Mater. Interfaces, 2019,11(2):1996-2005. doi: 10.1021/acsami.8b15162

    23. [23]

      Chen Y, Xu X H, Ma R, Sun S C, Lin J H, Luo J, Huang H M. Prepa-ration of hierarchical porous carbon by pyrolyzing sargassum under microwave: The internal connection between structure-oriented regulation and performance optimization of supercapacitors[J]. J. Energy Storage, 2022,53105190. doi: 10.1016/j.est.2022.105190

    24. [24]

      Szabó L, Xu X T, Uto K, Henzie J, Yamauchi Y, Ichinose I, Ebara M. Tailoring the structure of chitosan-based porous carbon nanofiber architectures toward efficient capacitive charge storage and capacitive deionization[J]. ACS Appl. Mater. Interfaces, 2022,14(3):4004-4021. doi: 10.1021/acsami.1c20199

    25. [25]

      Chen H J, Wei H M, Fu N, Qian W, Liu Y P, Lin H L, Han S. Nitrogen-doped porous carbon using ZnCl 2 as activating agent for high-performance supercapacitor electrode materials[J]. J. Mater. Sci., 2018,53(4):2669-2684. doi: 10.1007/s10853-017-1453-3

    26. [26]

      Xu X W, Shen J F, Li N, Ye M X. Microwave-assisted synthesis of graphene/CoMoO4 nanocomposites with enhanced supercapacitor performance[J]. J. Alloy. Compd., 2014,616:58-65. doi: 10.1016/j.jallcom.2014.07.047

    27. [27]

      Fang B Z, Binder L. A novel carbon electrode material for highly improved EDLC performance[J]. J. Phys. Chem. B, 2006,110(15):7877-7882. doi: 10.1021/jp060110d

    28. [28]

      Pu X J, Zhao D, Fu C L, Chen Z X, Cao S N, Wang C S, Cao Y L. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves[J]. Angew. Chem. Int. Ed., 2021,60(39):21310-21318. doi: 10.1002/anie.202104167

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    15. [15]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    19. [19]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    20. [20]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

Metrics
  • PDF Downloads(23)
  • Abstract views(1519)
  • HTML views(432)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return