Citation: Qiang‐Qiang SUN, Peng‐Cheng ZHAO, Ruo‐Yu WU, Bao‐Yue CAO, Yi‐Meng WANG, Xue‐Mei FAN. Porous blade⁃like cobalt disulfide electrocatalyst boosting hydrazine⁃assistance energy⁃efficient hydrogen production[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(3): 422-432. doi: 10.11862/CJIC.2022.284 shu

Porous blade⁃like cobalt disulfide electrocatalyst boosting hydrazine⁃assistance energy⁃efficient hydrogen production

  • Corresponding author: Qiang‐Qiang SUN, sqq3c118@163.com
  • Received Date: 3 August 2022
    Revised Date: 30 November 2022

Figures(6)

  • Here, we report a three-dimensional blade -like nanosheet cobalt disulfide electrocatalyst with CoS2 as the main crystal phase with a small amount of the mixed NiO phase, which is fabricated in situ on nickel foam (NF) by one-step hydrothermal synthesis. When the molar ratio of cobalt and sulfur in the solution was 1∶5, the crystalline CoS2/NF electrocatalyst with a three-dimensional porous blade-like structure composed of 10 nm nanosheets was obtained at 140 ℃ for 18 h. During hybrid water electrolysis in an alkaline medium containing hydrazine hydrate, CoS2/NF electrode merely need 83 mV overpotential to deliver -10 mA·cm-2 towards hydrogen evolution reaction (HER), while 51 mV (vs RHE) oxidation potential to drive 50 mA·cm-2 towards hydrazine oxidation reaction (HzOR). Integrated into a hybrid cell towards hydrazine hydrate assisted water electrolysis, the CoS2/NF couple required a cell voltage of only 0.550 V to afford 100 mA·cm-2 current density, far lower than that of overall water splitting (2.075 V), giving rise to the significant decrease of power consumption and the great improvement of hydrogen-producing efficiency. As-prepared CoS2/NF displayed excellent stability and durability towards HER or HzOR both in three-electrode and two-electrode systems. The formation of a nanoporous blade-like structure created a large number of micropores on the electrode surface, which led to the nearly 24-fold increased electrochemical active area (ECSA), and provided a huge amount of active sites and material transfer channels for the catalytic reaction. The formation of cobalt disulfide and nickel oxide phase synergically improved the intrinsic hydrogen evolution activity to a certain extent. The composition and structural characteristics of CoS2/NF contribute to superior catalytic performance, and the structural advantage played the predominant role in outstanding catalytic performances. Using mechanism research, the reaction paths of CoS2/NF in HER and HzOR are proposed, respectively.
  • 加载中
    1. [1]

      Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectron-chemical water splitting[J]. Nat. Rev. Chem., 2017,1(1)0003. doi: 10.1038/s41570-016-0003

    2. [2]

      Reddy K P K, Rameez M, Wang T T, Wang K Y, Lin E Y R, Lin M C, Diau E W G, Hung C H, Chueh Y L, Pande K P, Lee P T. Screenprinted hole transport material-free perovskite solar cell for water splitting incorporating Cu-NiCo2O4 catalyst[J]. Mater. Lett., 2022,313131838. doi: 10.1016/j.matlet.2022.131838

    3. [3]

      Wang X Q, Wang B, Chen Y F, Wang M Y, Wu Q, Srinivas K, Yu B, Zhang X J, Ma F, Zhang W L. Fe2 P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting[J]. J. Mater. Sci. Technol., 2022,105:266-273. doi: 10.1016/j.jmst.2021.06.080

    4. [4]

      Chen S, Duan J J, Vasileff A, Qiao S Z. Size fractionation of twodimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion[J]. Angew. Chem. Int. Ed., 2016,55(11):3804-3808. doi: 10.1002/anie.201600387

    5. [5]

      Zhou L, Shao M F, Zhang C, Zhao J W, He S, Rao D M, Wei M G, Evans D, Duan X. Hierarchical CoNi-sulfide nanosheet arrays derived from layered double hydroxides toward efficient hydrazine electrooxidation[J]. Adv. Mater., 2017,29(6)1604080. doi: 10.1002/adma.201604080

    6. [6]

      Asset T, Roy A, Sakamoto T, Padilla M, Matanovic I, Artyushkova K, Serov A, Maillard F, Chatenet M, Asazawa K, Tanaka H, Atanassov P. Highly active and selective nickel molybdenum catalysts for direct hydrazine fuel cell[J]. Electrochim. Acta, 2016,215:420-426. doi: 10.1016/j.electacta.2016.08.106

    7. [7]

      Huang J F, Zhao S N, Chen W, Zhou Y, Yang X L, Zhu Y H, Li C Z. Three-dimensionally grown thorn-like Cu nanowire arrays by fully electrochemical nanoengineering for highly enhanced hydrazine oxidation[J]. Nanoscale, 2016,8(11):5810-5814. doi: 10.1039/C5NR06512G

    8. [8]

      Yang J J, Xu L, Zhu W X, Xie M, Liao F, Cheng T, Kang Z H, Shao M W. Rh/RhOx nanosheets as pH-universal bifunctional catalysts for hydrazine oxidation and hydrogen evolution reactions[J]. J. Mater. Chem. A, 2022,10(4):1891-1898. doi: 10.1039/D1TA09391F

    9. [9]

      Li Y P, Wang W T, Cheng M Y, Qian Q Z, Zhu Y, Zhang G Q. Environmentally benign general synthesis of nonconsecutive carbon-coated RuP2 porous microsheets as efficient bifunctional electrocatalysts under neutral conditions for energy-saving H2 production in hybrid water electrolysis[J]. Catal. Sci. Technol., 2022,12(13):4339-4349. doi: 10.1039/D2CY00055E

    10. [10]

      Pan J B, Wang B H, Wang J B, Ding H Z, Zhou W, Liu X, Zhang J R, Shen S, Guo J K, Chen L, Au C T, Jiang L L, Yin S F. Activity and stability boosting of an oxygen -vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation[J]. Angew. Chem. Int. Ed., 2021,60(3):1433-1440. doi: 10.1002/anie.202012550

    11. [11]

      Tang J, Gao B, Pan J B, Chen L, Zhao Z H, Shen S, Guo J K, Au C T, Yin S F. CdS nanorods anchored with CoS2 nanoparticles for enhanced photocatalytic hydrogen production[J]. Appl. Catal. A-Gen., 2019,588117281. doi: 10.1016/j.apcata.2019.117281

    12. [12]

      Pan J B, Liu X, Wang B H, Chen Y A, Tan H Y, Ouyang J, Zhou W, Shen S, Chen L, Au C T, Yin S F. Conductive MOFs coating on hematite photoanode for activity boost via surface state regulation[J]. Appl. Catal. B-Environ., 2022,315121526. doi: 10.1016/j.apcatb.2022.121526

    13. [13]

      Pan J B, Shen S, Chen L, Au C T, Yin S F. Core-shell photoanodes for photoelectrochemical water oxidation[J]. Adv. Funct. Mater., 2021,31(36)2104269. doi: 10.1002/adfm.202104269

    14. [14]

      Chen S, Wang C L, Liu S, Huang M X, Lu J, Xu P P, Tong H G, Hu L, Chen Q W. Boosting hydrazine oxidation reaction on CoP/Co MottSchottky electrocatalyst through engineering active sites[J]. J. Phys. Chem. Lett., 2021,12(20):4849-4856. doi: 10.1021/acs.jpclett.1c00963

    15. [15]

      Jafarian M, Rostami T, Mahjani M G, Gobal F. A low cost and highly active non-noble alloy electrocatalyst for hydrazine oxidation based on nickel ternary alloy at the surface of graphite electrode[J]. J. Electroanal. Chem., 2016,763:134-140. doi: 10.1016/j.jelechem.2015.12.031

    16. [16]

      Feng Z B, Gao B, Wang L, Zhang H, Lu P, Xing P F. Nanoporous cobalt-selenide as high-performance bifunctional electrocatalyst towards oxygen evolution and hydrazine oxidation[J]. J. Electrochem. Soc., 2020,167(13)134501. doi: 10.1149/1945-7111/abb4ad

    17. [17]

      Kim J Y, Han S, Bang J H. Cobalt disulfide nano-pine-tree array as a platinum alternative electrocatalyst for hydrogen evolution reaction[J]. Mater. Lett., 2017,189:97-100. doi: 10.1016/j.matlet.2016.11.080

    18. [18]

      Ma X, Wang J M, Liu D N, Kong R M, Hao S, Du G, Asiri A M, Sun X P. Hydrazine-assisted electrolytic hydrogen production: CoS2 nanoarray as a superior bifunctional electrocatalyst[J]. New J. Chem., 2017,41(12):4754-4757. doi: 10.1039/C7NJ00326A

    19. [19]

      Gong M, Zhou W, Tsai M C, Zhou J G, Guan M Y, Lin M C, Zhang B, Hu Y F, Wang D Y, Yang J, Pennycook S J, Hwang B J, Dai H J. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis[J]. Nat. Commun., 2014,54695. doi: 10.1038/ncomms5695

    20. [20]

      Sun Q Q, Wang L Y, Shen Y Q, Zhou M, Ma Y, Wang Z L, Zhao C. Bifunctional copper-doped nickel catalysts enable energy-efficient hydrogen production via hydrazine oxidation and hydrogen evolution reduction[J]. ACS Sustain. Chem. Eng., 2018,6(10):12746-12754. doi: 10.1021/acssuschemeng.8b01887

    21. [21]

      Sun Q Q, Dong Y J, Wang Z L, Yin S W, Zhao C. Synergistic nanotubular copper-doped nickel catalysts for hydrogen evolution reactions[J]. Small, 2018,14(14)1704137. doi: 10.1002/smll.201704137

    22. [22]

      SUN Q Q, ZHOU C S, ZHANG G C, WANG Z L. Synthesis of porous dendritic nickel-copper alloy and the electroctalytic performances towards hydrogen evolution and hydrazine oxidation[J]. Chinese J. Inorg. Chem., 2020,36(4):703-714.  

    23. [23]

      Huang J L, Hou D M, Zhou Y C, Zhou W J, Li G Q, Tang Z H, Li L G, Chen S W. MoS2 nanosheet -coated CoS2 nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution[J]. J. Mater. Chem. A, 2015,3(45):22886-22891. doi: 10.1039/C5TA07234D

    24. [24]

      Zhu L, Susac D, Teo M, Wong K C, Wong P C, Parsons R R, Bizzotto D, Mitchell K A R, Campbell S A. Investigation of CoS2 -based thin films as model catalysts for the oxygen reduction reaction[J]. J. Catal., 2008,258(1):235-242. doi: 10.1016/j.jcat.2008.06.016

    25. [25]

      Sun Y J, Liu C, Grauer D C, Yano J, Long J R, Yang P, Chang C J. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water[J]. J. Am. Chem. Soc., 2013,135(47):17699-17702. doi: 10.1021/ja4094764

    26. [26]

      López M C, Ortiz G F, Lavela P, Alcántara R, Tirado J L. Improved energy storage solution based on hybrid oxide materials[J]. ACS Sustain. Chem. Eng., 2013,1(1):46-56. doi: 10.1021/sc300096s

    27. [27]

      Jing C, Jing X, Wang J M, Zhang L Y, Zhou H, Zhong Y, Chen D, Fan H Q, Shao H B, Zhang J Q, Cao C N. Fabrication of three-dimensional nanoporous nickel films with tunable nanoporosity and their excellent electrocatalytic activities for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2013,38(2):934-941. doi: 10.1016/j.ijhydene.2012.10.084

    28. [28]

      Wang J M, Ma X, Liu T T, Liu D N, Hao S, Du G, Kong R M, Asiri A M, Sun X P. NiS2 nanosheet array: A high-active bifunctional electrocatalyst for hydrazine oxidation and water reduction toward energyefficient hydrogen production[J]. Mater. Today Energy, 2017,3:9-14. doi: 10.1016/j.mtener.2017.02.002

    29. [29]

      Liu M, Zhang R, Zhang L X, Liu D N, Hao S, Du G, Asiri A M, Kong R M, Sun X P. Energy-efficient electrolytic hydrogen generation using a Cu3P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction[J]. Inorg. Chem. Front., 2017,4(3):420-423. doi: 10.1039/C6QI00384B

    30. [30]

      Ha T, Do H H, Lee H, Ha N N, Ha N T T, Ahn S H, Oh Y, Kim S Y, Kim M G. A GO/CoMo3S13 chalcogel heterostructure with rich catalytic Mo-S-Co bridge sites for the hydrogen evolution reaction[J]. Nanoscale, 2022,14(26):9331-9340. doi: 10.1039/D2NR01800D

    31. [31]

      Tang C Y, Wang W, Sun A, Qi C, Zhang D, Wu Z, Wang D. Sulfurdecorated molybdenum carbide catalysts for enhanced hydrogen evolution[J]. ACS Catal., 2015,5(11):6956-6963. doi: 10.1021/acscatal.5b01803

    32. [32]

      Wang L Y, Li Y B, Sun Q Q, Qiang Q, Shen Y Q, Ma Y, Wang Z L, Zhao C. Ultralow FeⅢ ion doping triggered generation of Ni3S2 ultrathin nanosheet for enhanced oxygen evolution reaction[J]. ChemCatChem, 2019,11(7):2011-2016. doi: 10.1002/cctc.201801959

    33. [33]

      Suryanto B H R, Wang Y, Hocking R K, Adamson W, Zhao C. Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide[J]. Nat. Commun., 2019,105599. doi: 10.1038/s41467-019-13415-8

    34. [34]

      Sun T T, Zhang C W, Chen J F, Yan Y S, Zakhidov A A, Baughman R H, Xu L B. Three-dimensionally ordered macro-/mesoporous Ni as a highly efficient electrocatalyst for the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2015,3(21):11367-11375. doi: 10.1039/C5TA01383F

    35. [35]

      Kornienko N, Resasco J, Becknell N, Jiang C M, Liu Y S, Nie K Q, Sun X H, Guo J H, Leone S R, Yang P D. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst[J]. J. Am. Chem. Soc., 2015,137(23):7448-7455. doi: 10.1021/jacs.5b03545

    36. [36]

      Devasenathipathy R, Mani V, Chen S M, Arulraj D, Vasantha V S. Highly stable and sensitive amperometric sensor for the determination of trace level hydrazine at cross linked pectin stabilized gold nanoparticles decorated graphene nanosheets[J]. Electrochim. Acta, 2014,135:260-269. doi: 10.1016/j.electacta.2014.05.002

    37. [37]

      Cazetta A L, Zhang T, Silva T L, Almeida V C, Asefa T. Bone charderived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation[J]. Appl. Catal. B-Environ., 2018,225:30-39. doi: 10.1016/j.apcatb.2017.11.050

    38. [38]

      Devasenathipathy R, Mani V, Chen S M. Highly selective amperometric sensor for the trace level detection of hydrazine at bismuth nanoparticles decorated graphene nanosheets modified electrode[J]. Talanta, 2014,124:43-51. doi: 10.1016/j.talanta.2014.02.031

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    10. [10]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    19. [19]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    20. [20]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

Metrics
  • PDF Downloads(3)
  • Abstract views(1095)
  • HTML views(212)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return