Citation: Li-Yu LI, Qiu-Feng SHI, Hai-Jie GUO, Cai-E CUI, Ping HUANG, Lei WANG. Preparation and luminescence properties of Eu2+ doped MgY2Al3Si2O11N cyan-emitting light phosphor[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 63-70. doi: 10.11862/CJIC.2022.271 shu

Preparation and luminescence properties of Eu2+ doped MgY2Al3Si2O11N cyan-emitting light phosphor

  • Corresponding author: Lei WANG, wanglei_keke@163.com
  • Received Date: 19 June 2022
    Revised Date: 8 October 2022

Figures(6)

  • A series of Eu2+ doped MgY2Al3Si2O11N (MYASON) cyan-emitting phosphors were synthesized by a high-temperature solid-state method. The effects of three preparation methods on the phase structure and luminous intensity of phosphor were discussed in detail. By comparing the XRD patterns and fluorescence intensity of samples, it was proved that H2/N2 as a reducing atmosphere was conducive to obtaining pure phase and good luminescence properties. X-ray diffraction refinement and X-ray photoelectron spectroscopy proved that Si4+-N3- ion pair was successfully doped into the garnet lattice. The emission spectrum of the sample showed asymmetric broadband emission at 420-750 nm. With the increase of Eu2+ doping concentration, the emission intensity of the phosphor was quenched by concentration. The quenching mechanism is electric multipole interaction. In addition, the thermal stability of the sample was studied by variable temperature spectrum, and its activation energy (ΔE) was calculated to be 0.22 eV. The results show that MYASON∶Eu2+ phosphor exhibited asymmetric broadband emission in the cyanemitting light region when excited by 365 nm ultraviolet light, and the peak value was 490 nm, which can effectively provide cyan-emitting light components for the white light emitting diode excited by the ultraviolet chip.
  • 加载中
    1. [1]

      SONG X J, TU Q F, ZHOU W, ZHOU T M. Prospect of the application for high brightness LED in lighting area[J]. Semiconductor Optoelectronics, 2002,23(5):356-360. doi: 10.3969/j.issn.1001-5868.2002.05.020

    2. [2]

      Yam F K, Hassan Z. Innovative advances in LED technology[J]. Microelectron. J., 2005,36(2):129-137. doi: 10.1016/j.mejo.2004.11.008

    3. [3]

      Hakeem D A, Pi J W, Kim S W, Park K. New Y2LuCaAl2SiO12: Ln (Ln=Ce3+, Eu3+, and Tb3+) phosphors for white LED applications[J]. Inorg. Chem. Front., 2018,5(6):1336-1345. doi: 10.1039/C8QI00111A

    4. [4]

      Sheu J K, Chang S J, Kuo C H, Su Y K, Wu L W, Lin Y C, Lai W C, Tsai J M, Chi G C, Wu R K. White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors[J]. IEEE Photonics Technol. Lett., 2003,15(1):18-20. doi: 10.1109/LPT.2002.805852

    5. [5]

      YU X B, YANG L Z, YANG S P, ZHOU C L, XU X L, TANG J F, PENG X D. Synthesis and luminescence of SrZnO2: Eu3+, Li+ phosphor by long wavelength UV excitation[J]. Journal of the Chinese Rare Earth Society, 2005,23(5):533-536.  

    6. [6]

      Qu M Y, Zhang X Y, Mi X Y, Sun H Y, Liu Q S, Bai Z H. Luminescence color tuning of Ce3+ and Tb3+ co-doped Ca2YZr2Al3O12 phosphors with high color rendering index via energy transfer[J]. J. Lumines., 2020,228117557. doi: 10.1016/j.jlumin.2020.117557

    7. [7]

      Taguchi T. Present status of energy saving technologies and future prospect in white LED lighting[J]. IEEJ Trans. Electr. Electron. Eng., 2008,3(1):21-26. doi: 10.1002/tee.20228

    8. [8]

      Wu Y F, Yin X F, Zhang Q J, Wang W, Mu X Z. The recycling of rare earths from waste tricolor phosphors in fluorescent lamps: A review of processes and technologies[J]. Resour. Conserv. Recycl., 2014,88:21-31. doi: 10.1016/j.resconrec.2014.04.007

    9. [9]

      XU Y, HUANG J F, WANG H Q, WU M J, YU X H, HU J G. Synthesis, properties and applications of rare earth tricolor phosphors[J]. Chinese Journal of Luminescence, 1981,2(1):52-62.  

    10. [10]

      Yan C P, Liu Z N, Zhuang W D, Liu R H, Xing X R, Liu Y H, Chen G T, Li Y F, Ma X L. YScSi4N6C: Ce3+—A broad cyan-emitting phosphor to weaken the cyan cavity in full-spectrum white light-emitting diodes[J]. Inorg. Chem., 2017,56(18):11087-11095. doi: 10.1021/acs.inorgchem.7b01408

    11. [11]

      Strobel P, de Boer T, Weiler V, Schmidt P J, Moewes A, Schnick W. Luminescence of an oxonitridoberyllate: A study of narrow-band cyanemitting Sr[Be6ON4] : Eu2+[J]. Chem. Mat., 2018,30(9):3122-3130. doi: 10.1021/acs.chemmater.8b01256

    12. [12]

      Liang M Z, Xu J F, Qiang Y C, Kang H J, Zhang L L, Chen J, Liu C, Luo X B, Li Y, Zhang J J, OuYang L Q, You W X, Ye X Y. Ce3+ doped BaLu2Al2Ga2SiO12—A novel blue-light excitable cyanemitting phosphor with ultra-high quantum efficiency and excellent stability for full-spectrum white LEDs[J]. J. Rare Earths, 2021,39(9):1031-1039. doi: 10.1016/j.jre.2020.09.015

    13. [13]

      Zhang Q, Wang X C, Wang Y H. Design of a broadband cyanemitting phosphor with robust thermal stability for high-power WLED application[J]. J. Alloy. Compd., 2021,886161217. doi: 10.1016/j.jallcom.2021.161217

    14. [14]

      Leng Z H, Zhang D, Bai H, She P B, Zhao J, Tang Z B. Site occupancy and photoluminescence properties of cyan-emitting K2Ca2Si2O7: Bi3+ phosphor for white light emitting diodes[J]. Opt. Mater., 2021,118111293. doi: 10.1016/j.optmat.2021.111293

    15. [15]

      Feng W L. Preparation and luminescent properties of green SrAl2O4: Eu2+ and blue SrAl2O4: Eu2+, Gd3+ phosphors[J]. Mater. Lett., 2013,110:91-93. doi: 10.1016/j.matlet.2013.07.134

    16. [16]

      Zhou X F, Geng W Y, Ding J Y, Wang Y C, Wang Y H. Structure, bandgap, photoluminescence evolution and thermal stability improved of Sr replacement apatite phosphors Ca10-xSrx(PO4)6F2: Eu2+ (x=4, 6, 8)[J]. Dyes Pigment., 2018,152(12):75-84.

    17. [17]

      Chen Y B, Feng D H, Xu S X, Zeng S W, Wei X R. Synthesis and photoluminescence of Eu2+ doped Lu2CaMg2Si3O12 garnet phosphors[J]. Mater. Lett., 2016,164:180-182. doi: 10.1016/j.matlet.2015.10.144

    18. [18]

      Bao R T, Jin S, Liu D M, Wen C, Shi J L, Wang Z P, Yuan X X, Li P L, Yang Z P, Wang Z J. Luminescence and energy transfer of white emitting phosphor Mg2Y2Al2Si2O12: Eu2+, Mn2+[J]. Optik, 2021,241166450. doi: 10.1016/j.ijleo.2021.166450

    19. [19]

      Bhatti H S, Gupta A, Verma N K, Kumar S. Effect of temperature on excited state life-times of rare earth doped zinc oxide phosphors[J]. J. Phys. Chem. Solids, 2006,67(4):868-870. doi: 10.1016/j.jpcs.2005.12.009

    20. [20]

      Chu S Q, Hua Y J, Ma H P, Lou L Y, Xu S Q. A novel bright blue emitting (Ba/Sr)Al2Si3O4N4: Eu2+ phosphors synthesized with BaAlO4 as precursor[J]. J. Alloy. Compd., 2020,843154939. doi: 10.1016/j.jallcom.2020.154939

    21. [21]

      Lv W, Wang H C, Jia C Y, Kang X J. Generating green and yellow lines in Y6Si3O9N4: Ce3+, Tb3+/Dy3+ oxynitrides phosphor[J]. J. Lumines., 2019,213:297-303. doi: 10.1016/j.jlumin.2019.05.048

    22. [22]

      WANG C. The synthesis and luminescence properties of several (oxy) nitride based phosphors for (near) UV white light emitting diodes. Lanzhou: Lanzhou University, 2016: 10-11

    23. [23]

      Min X, Hu M Z, Yang Y Y, Liu B F, Wu Y H, Yu L X. Effects of fluxes on preparation and luminescence properties of CaSi2O2N2: Eu2+ phosphors[J]. Opt. Mater., 2021,117111203. doi: 10.1016/j.optmat.2021.111203

    24. [24]

      Setlur A A, Heward W J, Hannah M E, Happek U. Incorporation of Si4+-N3-into Ce3+-doped garnets for warm white LED phosphors[J]. Chem. Mat., 2008,20(19):6277-6283. doi: 10.1021/cm801732d

    25. [25]

      Liu Y F, Xia Z, Hao Z D, Wang X J, Zhang J H. Generation of broad-band emission by incorporating N3- into Ca3Sc2Si3O12: Ce3+ garnet for high rendering white LEDs[J]. J. Mater. Chem., 2011,21(17):6354-6358. doi: 10.1039/c0jm04404k

    26. [26]

      CHEN J C, PAN Z F. Preparation and characterization of garnet phase oxynitride fluorescent powder for white light LED[J]. Modern Chemical Industry, 2017,37(11):88-92. doi: 10.16606/j.cnki.issn0253-4320.2017.11.020

    27. [27]

      Pan Z F, Wang R P, Li W Q, Wu H Q, Chen J C, Zheng Y F. Cooperative cation substitution facilitated construction of garnet oxynitride MgY2Al3Si2O11N: Ce3+ for white LEDs[J]. J. Am. Ceram. Soc., 2018,101(12):5451-5460. doi: 10.1111/jace.15787

    28. [28]

      Uitert L. An empirical relation fitting the position in energy of the lower d-band edge for Eu2+ or Ce3+ in various compounds[J]. J. Lumines., 1984,29(1):1-9. doi: 10.1016/0022-2313(84)90036-X

    29. [29]

      Zhang X T, Zhang D, Zheng B F, Zheng Z B, Song Y H, Zheng K Y, Sheng Y, Shi Z, Zou H F. Luminescence and energy transfer of colortunable Y2Mg2Al2Si2O12: Eu2+, Ce3+ phosphors[J]. Inorg. Chem., 2021,60(8):5908-5916. doi: 10.1021/acs.inorgchem.1c00317

    30. [30]

      Zhang X T, An Z C, Dong R J, Song Y H, Zheng K Y, Sheng Y, Shi Z, Zou H F. Properties and application of single Eu2+-activated color tuning phosphors[J]. ACS Sustain. Chem. Eng., 2019,7(12):10724-10733. doi: 10.1021/acssuschemeng.9b01401

    31. [31]

      Chen L, Fei M, Zhang Z, Jiang Y, Chen S F, Dong Y Q, Sun Z H, Zhao Z, Fu Y B, He J H, Li C, Jiang Z. Understanding the local and electronic structures toward enhanced thermal stable luminescence of CaAlSiN3: Eu2+[J]. Chem. Mat., 2016,28(15):5505-5515. doi: 10.1021/acs.chemmater.6b02121

    32. [32]

      Dexter D L, Schulman J H. Theory of concentration quenching in inorganic phosphors[J]. J. Chem. Phys., 1954,22(6):1063-1070. doi: 10.1063/1.1740265

    33. [33]

      Blasse G. Energy transfer in oxidic phosphors[J]. Phys. Lett. A, 1968,28(6):444-445. doi: 10.1016/0375-9601(68)90486-6

    34. [34]

      Zhang J, Jiang C. Luminescence properties of Ca14Mg2(SiO4)8: Eu2+ from various Eu2+ sites for white -light-emitting diodes[J]. Mater. Res. Bull., 2014,60(4):67-73.

    35. [35]

      Cheng J, Zhang J, Bian X T, Zhai Z Y, Shi J. Photoluminescence properties, Judd-Ofelt analysis, and optical temperature sensing of Eu3+-doped Ca3La7(SiO4)5(PO4)O2 luminescent materials[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2020,230118057. doi: 10.1016/j.saa.2020.118057

    36. [36]

      Chen L, Cheng Z M, Zheng G F, Yao G, He L R, Wang L, Liu J Z, Zheng H W, Wei S Z, Ni H Y. A third route to synthesis of green phosphor SrSi2O2N2: Eu2+ from SrO[J]. J. Lumines., 2021,230117729. doi: 10.1016/j.jlumin.2020.117729

  • 加载中
    1. [1]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    2. [2]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    3. [3]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    4. [4]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    5. [5]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    6. [6]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    7. [7]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    8. [8]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    9. [9]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    10. [10]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    11. [11]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    12. [12]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    13. [13]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(7)
  • Abstract views(1451)
  • HTML views(267)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return