Citation: Jia-Xuan WANG, Liang-Qing LI, Lei MA, Jin-Yin LÜ, Jian-Hua YANG, Jin-Ming LU. Preparation of mordenite membrane for pervaporation dehydration of acetic acid by a two-stage varying temperature crystallization hydrothermal method[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 91-97. doi: 10.11862/CJIC.2022.270 shu

Preparation of mordenite membrane for pervaporation dehydration of acetic acid by a two-stage varying temperature crystallization hydrothermal method

  • Corresponding author: Jian-Hua YANG, yjianhua@dlut.edu.cn
  • Received Date: 9 June 2022
    Revised Date: 11 November 2022

Figures(4)

  • Pervaporation (PV) has been favorably adopted in the industrial dehydration of various organic mixtures. In this work, mordenite membrane (MOR membrane) for PV dehydration of acetic acid was prepared by a two-stage varying temperature crystallization hydrothermal method from dilute synthesis solution with a high molar ratio of water to silica (nH2O/nSiO2). The effects of varying temperature crystallization time, nH2O/nSiO2, and the amount of fluorine ion on the morphology and separation performance of MOR membrane were investigated. The results showed that the above conditions have significant effects on the morphology, crystallinity, membrane thickness, and PV performance of the MOR membranes. The best performance MOR membrane was prepared at first-stage temperature (150 ℃, 18 h) and second-stage temperature (120 ℃, 6 h) with nH2O/nSiO2=60. The permeation flux and separation coefficient of the mass fraction of 50% acetic acid aqueous solution were 1.45 kg·m-2·h-1 and 1 008, respectively.
  • 加载中
    1. [1]

      Lei Z G, Li C Y, Li Y X, Chen B H. Separation of acetic acid and water by complex extractive distillation[J]. Sep. Purif. Technol., 2004,36(2):131-138. doi: 10.1016/S1383-5866(03)00208-9

    2. [2]

      Wang X P. Modified alginate composite membranes for the dehydration of acetic acid[J]. J. Membr. Sci., 2000,170(1):71-79. doi: 10.1016/S0376-7388(99)00361-0

    3. [3]

      Jonquières A, Clément R, Lochon P, Néel J, Dresch M, Chrétien B. Industrial state-of-the-art of pervaporation and vapour permeation in the western countries[J]. J. Membr. Sci., 2002,206(1/2):87-117.

    4. [4]

      Bowen T C, Noble R D, Falconer J L. Fundamentals and applications of pervaporation through zeolite membranes[J]. J. Membr. Sci., 2004,245(1/2):1-33.

    5. [5]

      Smitha B, Suhanya D, Sridhar S, Ramakrishna M. Separation of organic- organic mixtures by pervaporation-A review[J]. J. Membr. Sci., 2004,241(1):1-21. doi: 10.1016/j.memsci.2004.03.042

    6. [6]

      Wee S L, Tye C T, Bhatia S. Membrane separation process-pervaporation through zeolite membrane[J]. Sep. Purif. Technol., 2008,63(3):500-516. doi: 10.1016/j.seppur.2008.07.010

    7. [7]

      Sander U, Soukup P. Design and operation of a pervaporation plant for ethanol dehydration[J]. J. Membr. Sci., 1988,36:463-475. doi: 10.1016/0376-7388(88)80036-X

    8. [8]

      WANG J Q, YANG J H, CHEN Z, YIN D H. Research advances in zeolite membranes for pervaporation dehydration of organics in harsh environment[J]. Membrane Science and Technology, 2011,31(3):118-126. doi: 10.3969/j.issn.1007-8924.2011.03.018

    9. [9]

      Raza W, Wang J X, Yang J H, Tsuru T. Progress in pervaporation membranes for dehydration of acetic acid[J]. Sep. Purif. Technol., 2021,262118338. doi: 10.1016/j.seppur.2021.118338

    10. [10]

      Li Y S, Zhang X F, Wang J Q. Preparation for ZSM-5 membranes by a two-stage varying-temperature synthesis[J]. Sep. Purif. Technol., 2001,25(1/2/3):459-466.

    11. [11]

      Kong C L, Lu J M, Yang J H, Wang J Q. Preparation of silicalite-1 membranes on stainless steel supports by a two-stage varyingtemperature in situ synthesis[J]. J. Membr. Sci., 2006,285(1/2):258-264.

    12. [12]

      Zhu M H, Xia S L, Hua X M, Feng Z J, Hu N, Zhang F, Kumakiri I, Lu Z H, Chen X S, Kita H. Rapid preparation of acid-stable and high dehydration performance mordenite membranes[J]. Ind. Eng. Chem. Res., 2014,53(49):19168-19174. doi: 10.1021/ie501248y

    13. [13]

      Li L Q, Yang J H, Li J J, Han P, Wang J X, Zhao Y, Wang J Q, Lu J M, Yin D H, Zhang Y. Synthesis of high performance mordenite membranes from fluoride-containing dilute solution under microwaveassisted heating[J]. J. Membr. Sci., 2016,512:83-92. doi: 10.1016/j.memsci.2016.03.056

    14. [14]

      Wang S, Li L Q, Li J J, Wang J X, Pan E Z, Lu J M, Zhan Y, Yang J H. Sustainable synthesis of highly water-selective ZSM-5 membrane by wet gel conversion[J]. J. Membr. Sci., 2021,635119431. doi: 10.1016/j.memsci.2021.119431

    15. [15]

      Wang J X, Wang L, Li L Q, Li J J, Raza W, Lu J M, Yang J H. A green synthesis of MOR zeolite membranes by wet gel conversion for dehydration of water-acetic acid mixtures[J]. Sep. Purif. Technol., 2022,286120311. doi: 10.1016/j.seppur.2021.120311

    16. [16]

      Matsukata M, Sawamura K I, Shirai T, Takada M, Sekine Y, Kikuchi E. Controlled growth for synthesizing a compact mordenite membrane[J]. J. Membr. Sci., 2008,316(1/2):18-27.

    17. [17]

      Zhu M H, Hua X M, Liu Y S, Hu H L, Li Y Q, Hu N, Kumakiri I, Chen X S, Kita H. Influences of synthesis parameters on preparation of acid-stable and reproducible mordenite membrane[J]. Ind. Eng. Chem. Res., 2016,55(47):12268-12275. doi: 10.1021/acs.iecr.6b02125

    18. [18]

      Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time[J]. Chem. Rev., 2003,103(3):663-702. doi: 10.1021/cr020060i

    19. [19]

      Lim I H, Schrader W, Schüth F. The formation of zeolites from solution-Analysis by mass spectrometry[J]. Microporous Mesoporous Mater., 2013,166:20-36. doi: 10.1016/j.micromeso.2012.04.059

    20. [20]

      Chapman P D, Oliveira T, Livingston A G, Li K. Membranes for the dehydration of solvents by pervaporation[J]. J. Membr. Sci., 2008,318(1/ 2):5-37.

    21. [21]

      Li G, Kikuchi E, Matsukata M. A study on the pervaporation of wateracetic acid mixtures through ZSM-5 zeolite membranes[J]. J. Membr. Sci., 2003,218(1/2):185-194.

    22. [22]

      Li G, Kikuchi E, Matsukata M. Separation of water-acetic acid mixtures by pervaporation using a thin mordenite membrane[J]. Sep. Purif. Technol., 2003,32(1/2/3):199-206.

    23. [23]

      Tanaka K, Yoshikawa R, Ying C, Kita H, Okamoto K I. Application of zeolite membranes to esterification reactions[J]. Catal. Today, 2001,67(1/2/3):121-125.

    24. [24]

      Zhu M H, Kumakiri I, Tanaka K, Kita H. Dehydration of acetic acid and esterification product by acid-stable ZSM-5 membrane[J]. Micropo⁃ rous Mesoporous Mater., 2013,181:47-53. doi: 10.1016/j.micromeso.2012.12.044

    25. [25]

      Tsuru T, Shibata T, Wang J, Lee H R, Kanezashi M, Yoshioka T. Pervaporation of acetic acid aqueous solutions by organosilica membranes[J]. J. Membr. Sci., 2012,421:25-31.

    26. [26]

      Sato K, Sugimoto K, Kyotani T, Shimotsuma N, Kurata T. Synthesis, reproducibility, characterization, pervaporation and technical feasibility of preferentially b-oriented mordenite membranes for dehydration of acetic acid solution[J]. J. Membr. Sci., 2011,385:20-29.

  • 加载中
    1. [1]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    2. [2]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    3. [3]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    4. [4]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    5. [5]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    6. [6]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    7. [7]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    8. [8]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    9. [9]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    10. [10]

      Tiantian Dai Xi Yang . Teaching Design and Reflection on the “Osmotic Pressure of Solutions” in Medical Chemistry. University Chemistry, 2025, 40(5): 268-275. doi: 10.12461/PKU.DXHX202411032

    11. [11]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    12. [12]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    13. [13]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    14. [14]

      Qiang Wu Wenhua Hou . Teaching Classical Contents Newly: Taking Temperature–Entropy Diagram as an Example. University Chemistry, 2025, 40(4): 399-407. doi: 10.12461/PKU.DXHX202407102

    15. [15]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    16. [16]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    17. [17]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    18. [18]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

Metrics
  • PDF Downloads(8)
  • Abstract views(2129)
  • HTML views(382)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return