Citation: Yun-Song XU, Zhong-Ping YAO, Tian-Qi ZHAO, Yan-Ran GU, Xiao ZHANG, Ping SONG. MXene/Dendritic Co/Polyvinylidene Fluoride Composite Photothermal Membrane: Preparation and Interfacial Evaporation Properties[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2423-2432. doi: 10.11862/CJIC.2022.243 shu

MXene/Dendritic Co/Polyvinylidene Fluoride Composite Photothermal Membrane: Preparation and Interfacial Evaporation Properties

  • Corresponding author: Zhong-Ping YAO, yaozhongping@hit.edu.cn
  • Received Date: 29 May 2022
    Revised Date: 7 October 2022

Figures(6)

  • In this work, Ti3 AlC2 was etched and exfoliated into few-layer of Ti3C2Tx MXene nanosheets using wet etching. Then, dendritic Co was prepared by electrochemical reduction, and afterwards Ti3C2Tx/dendritic Co/PVDF composite photothermal membrane was prepared by vacuum filtration utilizing hydrophilic polyvinylidene fluoride (PVDF) membrane as substrate. The structure and morphology of the composites were characterized, as well as the optical absorption and interfacial evaporation properties of the composite photothermal membrane were studied. The results displayed that under the simulated one solar light (the light intensity was 1 kW·m-2), the light absorptivity of Ti3C2Tx/dendritic Co/PVDF composite photothermal membrane was 95.3%, the evaporation rate of pure water reached 1.78 kg·m-2·h-1, and the efficiency of interface evaporation was as high as 97.5%. In addition, the performance of interfacial evaporation in simulated seawater was accordingly tested. The water obtained by evaporation and condensation meets the drinking water standards of World Health Organization (WHO) and U.S. Environmental Protection Agency (EPA), and the evaporation rate reached 1.61 kg·m-2·h-1, which was stable at 1.59 kg·m-2·h-1 after five cycles.
  • 加载中
    1. [1]

      Blanco J, Malato S, Fernandez-Ibanez P, Alarcon D, Gernjak W, Maldonado M L. Review of Feasible Solar Energy Applications to Water Processes[J]. Renew. Sust. Energ. Rev., 2009,13(6/7):1437-1445.

    2. [2]

      Dalvi V H, Panse S V, Joshi J B. Solar Thermal Technologies as a Bridge from Fossil Fuels to Renewables[J]. Nat. Clim. Chang., 2015,5(11):1007-1013. doi: 10.1038/nclimate2717

    3. [3]

      Liu G H, Xu J L, Wang K Y. Solar Water Evaporation by Black Photothermal Sheets[J]. Nano Energy, 2017,41:269-284. doi: 10.1016/j.nanoen.2017.09.005

    4. [4]

      Guo L P, Gong J, Song C Y, Zhao Y L, Tan B, Zhao Q, Jin S B. Donor-Acceptor Charge Migration System of Superhydrophilic Covalent Triazine Framework and Carbon Nanotube toward High Performance Solar Thermal Conversion[J]. ACS Energy Lett., 2020,5(4):1300-1306. doi: 10.1021/acsenergylett.0c00394

    5. [5]

      Kou H, Liu Z X, Zhu B, Macharia D K, Ahmed S, Wu B H, Zhu M F, Liu X G, Chen Z G. Recyclable CNT-Coupled Cotton Fabrics for Low-Cost and Efficient Desalination of Seawater under Sunlight[J]. Desalination, 2019,462:29-38. doi: 10.1016/j.desal.2019.04.005

    6. [6]

      Shao C X, Zhao Y, Qu L T. Tunable Graphene Systems for Water Desalination[J]. ChemNanoMat, 2020,6(7):1028-1048. doi: 10.1002/cnma.202000041

    7. [7]

      Zhou L, Tan Y L, Wang J Y, Xu W C, Yuan Y, Cai W S, Zhu S N, Zhu J. 3D Self-Assembly of Aluminium Nanoparticles for Plasmon-Enhanced Solar Desalination[J]. Nat. Photonics, 2016,10(6):393-398. doi: 10.1038/nphoton.2016.75

    8. [8]

      Zhang J, Yang Y W, Zhao J Q, Dai Z H, Liu W G, Chen C B, Gao S, Golosov D A, Zavadski S M, Melnikov S N. Shape Tailored Cu2ZnSnS4 Nanosheet Aggregates for High Efficiency Solar Desalination[J]. Mater. Res. Bull., 2019,118110529. doi: 10.1016/j.materresbull.2019.110529

    9. [9]

      Yin K, Yang S, Wu J R, Li Y J, Chu D K, He J, Duan J A. Femtosecond Laser Induced Robust Ti Foam Based Evaporator for Efficient Solar Desalination[J]. J. Mater. Chem. A, 2019,7(14):8361-8367. doi: 10.1039/C9TA00291J

    10. [10]

      Kim C, Ryu Y, Shin D, Urbas A M, Kim K. Efficient Solar Steam Generation by Using Metal-Versatile Hierarchical Nanostructures for Nickel and Gold with Aerogel Insulator[J]. Appl. Surf. Sci., 2020,517146177. doi: 10.1016/j.apsusc.2020.146177

    11. [11]

      Liu C, Wu S J, Yang Z F, Sun H X, Zhu Z Q, Liang W D, Li A. Mechanically Robust and Flame-Retardant Silicon Aerogel Elastomers for Thermal Insulation and Efficient Solar Steam Generation[J]. ACS Omega, 2020,5(15):8638-8646. doi: 10.1021/acsomega.0c00086

    12. [12]

      Chou S S, Kaehr B, Kim J, Foley B M, De M, Hopkins P E, Huang J X, Brinker C J, Dravid V P. Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents[J]. Angew. Chem. Int. Ed., 2013,52(15):4160-4164. doi: 10.1002/anie.201209229

    13. [13]

      Huang S L, Long Y J, Yi H, Yang Z Y, Pang L J, Jin Z Y, Liao Q F, Zhang L J, Zhang Y Y, Chen Y Z, Cui H Z, Lu J G, Peng X S. Multifunctional Molybdenum Oxide for Solar-Driven Water Evaporation and Charged Dyes Adsorption[J]. Appl. Surf. Sci., 2019,491:328-334. doi: 10.1016/j.apsusc.2019.06.155

    14. [14]

      Yao Z P, Yu K L, Pan M Y, Xu H B, Zhao T Q, Jiang Z H. A Mechanically Durable, Excellent Recyclable 3D Hierarchical Ni3S2@Ni Foam Photothermal Membrane[J]. Green Energy Environ., 2022,7(3):492-499. doi: 10.1016/j.gee.2020.10.010

    15. [15]

      Goel N, Taylor R A, Otanicar T. A Review of Nanofluid-Based Direct Absorption Solar Collectors: Design Considerations and Experiments with Hybrid PV/Thermal and Direct Steam Generation Collectors[J]. Renew. Energy, 2020,145:903-913. doi: 10.1016/j.renene.2019.06.097

    16. [16]

      He J X, Zhao G H, Mu P, Wei H J, Su Y N, Sun H X, Zhu Z Q, Liang W D, Li A. Scalable Fabrication of Monolithic Porous Foam Based on Cross-Linked Aromatic Polymers for Efficient Solar Steam Generation[J]. Sol. Energy Mater. Sol. Cells, 2019,201110111. doi: 10.1016/j.solmat.2019.110111

    17. [17]

      Wilson H M, Rahman S A R, Parab A E, Jha N. Ultra-Low Cost Cotton Based Solar Evaporation Device for Seawater Desalination and Waste Water Purification to Produce Drinkable Water[J]. Desalination, 2019,456:85-96. doi: 10.1016/j.desal.2019.01.017

    18. [18]

      Xia Z J, Yang H C, Chen Z W, Waldman R Z, Zhao Y S, Zhang C, Patel S N, Darling S B. Porphyrin Covalent Organic Framework (POF)-Based Interface Engineering for Solar Steam Generation[J]. Adv. Mater. Interfaces, 2019,6(11)1900254. doi: 10.1002/admi.201900254

    19. [19]

      Zhu L L, Ding T P, Gao M M, Peh C K N, Ho G W. Shape Conformal and Thermal Insulative Organic Solar Absorber Sponge for Photothermal Water Evaporation and Thermoelectric Power Generation[J]. Adv. Mater. Interfaces, 2019,9(22)1900250.

    20. [20]

      Xu D X, Li Z D, Li L S, Wang J. Insights into the Photothermal Conversion of 2D MXene Nanomaterials: Synthesis, Mechanism, and Applications[J]. Adv. Funct. Mater., 2020,30(47)2000712. doi: 10.1002/adfm.202000712

    21. [21]

      Lin H, Wang X G, Yu L D, Chen Y, Shi J L. Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion[J]. Nano Lett., 2017,17(1):384-391. doi: 10.1021/acs.nanolett.6b04339

    22. [22]

      Li R Y, Zhang L B, Shi L, Wang P. MXene Ti3C2: An Effective 2D Light-To-Heat Conversion Material[J]. ACS Nano, 2017,11(4):3752-3759. doi: 10.1021/acsnano.6b08415

    23. [23]

      Soundiraraju B, George B K. Two-Dimensional Titanium Nitride (Ti2N) MXene: Synthesis, Characterization, and Potential Application as Surface-Enhanced Raman Scattering Substrate[J]. ACS Nano, 2017,11(9):8892-8900. doi: 10.1021/acsnano.7b03129

    24. [24]

      Ju M M, Yang Y W, Zhao J Q, Yin X T, Wu Y T, Que W X. Macroporous 3D MXene Architecture for Solar-Driven Interfacial Water Evaporation[J]. J. Adv. Dielectr., 2020,9(6)1950047.

    25. [25]

      Zhao J Q, Yang Y W, Yang C H, Tian Y P, Han Y, Liu J, Yin X T, Que W X. A Hydrophobic Surface Enabled Salt-Blocking 2D Ti3C2 MXene Membrane for Efficient and Stable Solar Desalination[J]. J. Mater. Chem. A, 2018,6(33):16196-16204. doi: 10.1039/C8TA05569F

    26. [26]

      Zhao X, Zha X J, Tang L S, Pu J H, Ke K, Bao R Y, Liu Z Y, Yang M B, Yang W. Self-Assembled Core-Shell Polydopamine@MXene with Synergistic Solar Absorption Capability for Highly Efficient Solar-To-Vapor Generation[J]. Nano Res., 2019,13(1):255-264.

    27. [27]

      Zheng Z M, Li H Y, Zhang X D, Jiang H, Geng X M, Li S M, Tu H Y, Cheng X R, Yang P, Wan Y F. High-Absorption Solar Steam Device Comprising Au@Bi2MoO 6-CDs: Extraordinary Desalination and Electricity Generation[J]. Nano Energy, 2020,68104298. doi: 10.1016/j.nanoen.2019.104298

    28. [28]

      Xu R Q, Wei N, Li Z K, Song X J, Li Q, Sun K Y, Yang E, Gong L, Sui Y L, Tian J, Wang X, Zhao M G, Cui H Z. Construction of Hierarchical 2D/2D Ti3C2/MoS2 Nanocomposites for High-Efficiency Solar Steam Generation[J]. J. Colloid Interface Sci., 2021,584:125-133. doi: 10.1016/j.jcis.2020.09.052

    29. [29]

      Zhang B P, Gu Q F, Wang C, Gao Q L, Guo J X, Wong P W, Liu C T, Alicia K A. Self-Assembled Hydrophobic/Hydrophilic Porphyrin-Ti3C2Tx MXene Janus Membrane for Dual-Functional Enabled Photothermal Desalination[J]. ACS Appl. Mater. Interfaces, 2021,13(3):3762-3770. doi: 10.1021/acsami.0c16054

    30. [30]

      Shao B, Wang Y D, Wu X, Lu Y, Yang X F, Chen G Y, Owens G, Xu H L. Stackable Nickel-Cobalt@Polydopamine Nanosheet Based Photothermal Sponges for Highly Efficient Solar Steam Generation[J]. J. Mater. Chem. A, 2020,8(23):11665-11673. doi: 10.1039/D0TA03799K

    31. [31]

      Li Z L, Li Z, Chen L, Hu Y, Hu S S, Miao Z H, Sun Y, Besenbacher F, Yu M. Polyethylene Glycol-Modified Cobalt Sulfide Nanosheets for High-Performance Photothermal Conversion and Photoacoustic/ Magnetic Resonance Imaging[J]. Nano Res., 2018,11(5):2436-2449. doi: 10.1007/s12274-017-1865-z

    32. [32]

      Zhang Z R, Yao Z P, Li Y, Lu S T, Wu X H, Jiang Z H. Cation-Induced Ti3C2Tx MXene Hydrogel for Capacitive Energy Storage[J]. Chem. Eng. J., 2022,433134488. doi: 10.1016/j.cej.2021.134488

    33. [33]

      Li X J, Yao Z P, Wang J K, Li D Q, Yu K L, Jiang Z H. A Novel Flake-like Cu7S4 Solar Absorber for High-Performance Large-Scale Water Evaporation[J]. ACS Appl. Energ. Mater., 2019,2(7):5154-5161. doi: 10.1021/acsaem.9b00831

    34. [34]

      Li Z T, Wang C B, Lei T, Ma H L, Su J B, Ling S, Wang W. Arched Bamboo Charcoal as Interfacial Solar Steam Generation Integrative Device with Enhanced Water Purification Capacity[J]. Adv. Sustain. Syst., 2019,3(4)1800144. doi: 10.1002/adsu.201800144

    35. [35]

      Ghasemi H, Ni G, Marconnet A M, Loomis J, Yerci S, Miljkovic N, Chen G. Solar Steam Generation by Heat Localization[J]. Nat. Commun., 2014,54449. doi: 10.1038/ncomms5449

    36. [36]

      Li Z H, Liu J J, Zhao Y F, Waterhouse G I N, Chen G B, Shi R, Zhang X, Liu X W, Wei Y M, Wen X D. Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins[J]. Adv. Mater., 2018,30(31)1800527. doi: 10.1002/adma.201800527

    37. [37]

      Wang P F, Gu Y F, Miao L, Zhou J H, Su H, Wei A Y, Mu X J, Tian Y Z, Shi J Q, Cai H F. Co3O4 Nanoforest/Ni Foam as the Interface Heating Sheet for the Efficient Solar-Driven Water Evaporation under One Sun[J]. Sustain. Mater. Technol., 2019,20e00106.

    38. [38]

      Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y. Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes)[J]. Science, 2016,353(6304):1137-1140. doi: 10.1126/science.aag2421

    39. [39]

      Chaudhuri K, Alhabeb M, Wang Z X, Shalaev V M, Gogotsi Y, Boltasseva A. Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene)[J]. ACS Photonics, 2018,5(3):1115-1122. doi: 10.1021/acsphotonics.7b01439

    40. [40]

      Yu K, Tan X, Hu Y A, Chen F W, Li S J. Microstructure Effects on The Electrochemical Corrosion Properties of Mg-4.1% Ga-2.2% Hg Alloy as the Anode for Seawater-Activated Batteries[J]. Corrosion Sci., 2011,53(5):2035-2040. doi: 10.1016/j.corsci.2011.01.040

    41. [41]

      Smith A H, Lopipero P A, Bates M N, Steinmaus C M. Arsenic Epidemiology and Drinking Water Standards[J]. Science, 2002,296(5576):2145-2146. doi: 10.1126/science.1072896

    42. [42]

      Zhou X Y, Guo Y H, Zhao F, Yu G H. Hydrogels as an Emerging Material Platform for Solar Water Purification[J]. Acc. Chem. Res., 2019,52(11):3244-3253. doi: 10.1021/acs.accounts.9b00455

    43. [43]

      Fan D Q, Lu Y, Zhang H, Xu H L, Lu C H, Tang Y C, Yang X F. Synergy of Photocatalysis and Photothermal Effect in Integrated 0D Perovskite Oxide/2D MXene Heterostructures for Simultaneous Water Purification and Solar Steam Generation[J]. Appl. Catal. B-Environ., 2021,295120285. doi: 10.1016/j.apcatb.2021.120285

    44. [44]

      Lu Y, Fan D Q, Wang Y D, Xu H L, Lu C H, Yang X F. Surface Patterning of Two-Dimensional Nanostructure-Embedded Photothermal Hydrogels for High-Yield Solar Steam Generation[J]. ACS Nano, 2021,15(6):10366-10376. doi: 10.1021/acsnano.1c02578

    45. [45]

      Zha X J, Zhao X, Pu J H, Tang L S, Ke K, Bao R Y, Bai L, Liu Z Y, Yang M B, Yang W. Flexible Anti-Biofouling MXene/Cellulose Fibrous Membrane for Sustainable Solar-Driven Water Purification[J]. ACS Appl. Mater. Interfaces, 2019,11(40):36589-36597. doi: 10.1021/acsami.9b10606

    46. [46]

      Zhao X, Zha X J, Pu J H, Bai L, Bao R Y, Liu Z Y, Yang M B, Yang W. Macroporous Three-Dimensional MXene Architectures for Highly Efficient Solar Steam Generation[J]. J. Mater. Chem. A, 2019,7(11):10446-10455.

    47. [47]

      Zhang Q, Yi G, Fu Z, Yu H T, Chen S, Quan X. Vertically Aligned Janus MXene-Based Aerogels for Solar Desalination with High Efficiency and Salt Resistance[J]. ACS Nano, 2019,13(11):13196-13207. doi: 10.1021/acsnano.9b06180

    48. [48]

      ZHANG K, HU K. Preparation and Photothermal Evaporation Performance of Janus PVDF/Graphene/Polydopamine Composite Membranes[J]. Plastics Science and Technology, 2021,49(9):29-32.  

    49. [49]

      Zhang B P, Wong P W, An A K. Photothermally Enabled MXene Hydrogel Membrane with Integrated Solar-Driven Evaporation and Photodegradation for Efficient Water Purification[J]. Chem. Eng. J., 2022,430133054. doi: 10.1016/j.cej.2021.133054

  • 加载中
    1. [1]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    8. [8]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    11. [11]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    12. [12]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    13. [13]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    16. [16]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    19. [19]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    20. [20]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

Metrics
  • PDF Downloads(7)
  • Abstract views(927)
  • HTML views(193)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return