Citation: Jing-Xiang ZHANG, Wai-Kwok WONG, Ka-Leung WONG, Nai-Ki MAK. Highly Conjugated Tetraphenylporphyrin-Ru(Ⅱ) Bipyridine Complex: Synthesis, Optical Properties, and Photodynamic Anticancer Activity[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2383-2391. doi: 10.11862/CJIC.2022.240 shu

Highly Conjugated Tetraphenylporphyrin-Ru(Ⅱ) Bipyridine Complex: Synthesis, Optical Properties, and Photodynamic Anticancer Activity

  • Corresponding author: Jing-Xiang ZHANG, zhangjx@hstc.edu.cn
  • Received Date: 10 May 2022
    Revised Date: 4 September 2022

Figures(6)

  • Two amphiphilic porphyrin-ruthenium (Ⅱ) complexes PorRu and PorZn-Ru were synthesized by the coordination of metal Ru(Ⅱ) and porphyrin-phenanthroline ligand L which is modified with conjugated pyrazine ring at the β position of porphyrin. Two compounds were characterized and evaluated by NMR and mass spectrometry, linear and nonlinear spectral analysis, and photodynamic anti-cancer activity study. Experimental results show that the two compounds had very high 1O2 quantum yields (0.93, 0.82), high two-photon absorption cross-sections (619, 621 GM), and up to about 22 nmol per 106 cell uptakes of nasopharyngeal carcinoma HK-1 cell line. Although no obvious subcellular target was observed by the costaining cell images, the high 1O2 yields and good cellular uptakes still made the ruthenium compounds have good photodynamic anticancer activity against HK-1 cells. At the light dose of 2 J·cm-2 and the administration concentration of 4 μmol·L-1, the inhibition efficiency reached (87.44±2.21)% and (45.03±2.85)% respectively.
  • 加载中
    1. [1]

      Lan M H, Zhao S J, Liu W M, Lee C S, Zhang W J, Wang P F. Photosensitizers for Photodynamic Therapy[J]. Adv. Healthc. Mater., 2019,8(13)1900132. doi: 10.1002/adhm.201900132

    2. [2]

      Chen J M, Fan T J, Xie Z J, Zeng Q Q, Xue P, Zheng T T, Chen Y Y, Luo X L, Zhang H. Advances in Nanomaterials for Photodynamic Therapy Applications: Status and Challenges[J]. Biomaterials, 2020,237119827. doi: 10.1016/j.biomaterials.2020.119827

    3. [3]

      Li X S, Kwon N, Guo T, Liu Z, Yoon J. Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy[J]. Angew. Chem. Int. Ed., 2018,57(36):11522-11534. doi: 10.1002/anie.201805138

    4. [4]

      Xie J L, Wang Y W, Choi W, Jangili P, Ge Y Q, Xu Y J, Kang J L, Liu L P, Zhang B, Xie Z J, He J, Xie N, Nie G H, Zhang H, Kim J S. Overcoming Barriers in Photodynamic Therapy Harnessing Nano-Formulation Strategies[J]. Chem. Soc. Rev., 2021,50:9152-9201. doi: 10.1039/D0CS01370F

    5. [5]

      Zhao X Z, Liu J P, Fan J L, Chao H, Peng X J. Recent Progress in Photosensitizers for Overcoming the Challenges of Photodynamic Therapy: From Molecular Design to Application[J]. Chem. Soc. Rev., 2021,50:4185-4219. doi: 10.1039/D0CS00173B

    6. [6]

      Huang T C, Yu Q, Liu S J, Huang W, Zhao Q. Phosphorescent Iridium(Ⅲ) Complexes: A Versatile Tool for Biosensing and Photodynamic Therapy[J]. Dalton Trans., 2018,47:7628-7633. doi: 10.1039/C8DT00887F

    7. [7]

      Wu Y P, Li S M, Chen Y C, He W J, Guo Z J. Recent Advances in Noble Metal Complex Based Photodynamic Therapy[J]. Chem. Sci., 2022,13(18):5085-5106. doi: 10.1039/D1SC05478C

    8. [8]

      Yi S L, Lu Z, Zhang J, Wang J, Xie Z H, Hou L X. Amphiphilic Gemini Iridium(Ⅲ) Complex as a Mitochondria-Targeted Theranostic Agent for Tumor Imaging and Photodynamic Therapy[J]. ACS Appl. Mater. Interfaces, 2019,11(17):15276-15289. doi: 10.1021/acsami.9b01205

    9. [9]

      Huang H Y, Banerjee S, Sadler P J. Recent Advances in the Design of Targeted Iridium (Ⅲ) Photosensitizers for Photodynamic Therapy[J]. ChemBioChem, 2018,19:1574-1589. doi: 10.1002/cbic.201800182

    10. [10]

      LI J, JI L N, CHAO H. Biotin-Ruthenium (Ⅱ) Photosensitizer as Tumor-targeted Two-Photon Photodynamic Therapy//Proceedings of 11th Chinese Chemical Biology Conference of Chinese Chemical Society. Guangzhou: Chinese Chemical Society, 2019: 252

    11. [11]

      Bolze F, Jenni S, Sour A, Heitz V. Molecular Photosensitisers for Two-Photon Photodynamic Therapy[J]. Chem. Commun., 2017,53:12857-12877. doi: 10.1039/C7CC06133A

    12. [12]

      Xu L, Zhang J Z, Yin L F, Long X T, Zhang W Y, Zhang Q C. Recent Progress in Efficient Organic Two-Photon Dyes for Fluorescence Imaging and Photodynamic Therapy[J]. J. Mater. Chem. C, 2020,8:6342-6349. doi: 10.1039/D0TC00563K

    13. [13]

      Sun Z Y, Zhang L P, Wu F P, Zhao Y X. Photosensitizers for Two-Photon Excited Photodynamic Therapy[J]. Adv. Funct. Mater., 2017,27(48)1704079. doi: 10.1002/adfm.201704079

    14. [14]

      Zipfel W R, Williams R M, Webb W W. Nonlinear Magic: Multiphoton Microscopy in the Biosciences[J]. Nat. Biotechnol., 2003,211369. doi: 10.1038/nbt899

    15. [15]

      Zeng L L, Kuang S, Li G Y, Jin C Z, Ji L N, Chao H. A GSH-Activatable Ruthenium (Ⅱ)-Azo Photosensitizer for Two-Photon Photodynamic Therapy[J]. Chem. Commun., 2017,53:1977-1980. doi: 10.1039/C6CC10330H

    16. [16]

      Shen J C, Liao X X, Wu W J, Feng T, Karges J, Lin M W, Luo H J, Chen Y, Chao H. A pH-Responsive Iridium(Ⅲ) Two-Photon Photosensitizer Loaded CaCO 3 Nanoplatform for Combined Ca2+ Overload and Photodynamic Therapy[J]. Inorg. Chem. Front., 2022,9(16):4171-4183. doi: 10.1039/D2QI00951J

    17. [17]

      Ke L B, Wei F M, Xie L N, Karges J, Chen Y, Ji L N, Chao H. A Biodegradable Iridium (Ⅲ) Coordination Polymer for Enhanced Two-Photon Photodynamic Therapy Using an Apoptosis-Ferroptosis Hybrid Pathway[J]. Angew. Chem. Int. Ed., 2022,61e202205429.

    18. [18]

      Kuang S, Wei F M, Karges J, Ke L B, Xiong K, Liao X X, Gasser G, Ji L N, Chao H. Photodecaging of a Mitochondria-Localized Iridium(Ⅲ) Endoperoxide Complex for Two-Photon Photoactivated Therapy under Hypoxia[J]. J. Am. Chem. Soc., 2022,144(9):4091-4101. doi: 10.1021/jacs.1c13137

    19. [19]

      Karotki A, Khurana M, Lepock J R, Wilson B C. Simultaneous Two-Photon Excitation of Photofrin in Relation to Photodynamic Therapy[J]. Photochem. Photobiol., 2006,82:443-452. doi: 10.1562/2005-08-24-RA-657

    20. [20]

      Goyan R L, Cramb D T. Near-Infrared Two-Photon Excitation of Protoporphyrin Ⅸ : Photodynamics and Photoproduct Generation[J]. Photochem. Photobiol., 2000,72:821-827. doi: 10.1562/0031-8655(2000)0720821NITPEO2.0.CO2

    21. [21]

      Khurana M, Collins H A, Karotki A, Anderson H L, Cramb D T, Wilson B C. Quantitative In Vitro Demonstration of Two-Photon Photodynamic Therapy Using Photofrin® and Visudyne®[J]. Photochem. Photobiol., 2007,83:1441-1448. doi: 10.1111/j.1751-1097.2007.00185.x

    22. [22]

      Collins H A, Khurana M, Moriyama E H, Mariampillai , A , Dahlstedt E, Balaz M, Kuimova M K, Drobizhev M, Yang V X D, Phillips D, Rebane A, Wilson B C, Anderson H L. Blood-Vessel Closure Using Photosensitizers Engineered for Two-Photon Excitation[J]. Nat. Photonics, 2008,2:420-424. doi: 10.1038/nphoton.2008.100

    23. [23]

      Crossley M J, King L G. Novel Heterocyclic Systems from Selective Oxidation at the β-Pyrrolic Position of Porphyrins[J]. J. Chem. Soc. Chem. Commun., 1984(14):920-922. doi: 10.1039/C39840000920

    24. [24]

      Schmidt R, Afshari E. Comment on"Effect of Solvent on the Phosphorescence Rate Constant of Singlet Molecular Oxygen (1Δ g)"[J]. J. Phys. Chem., 1990,94:4377-4378. doi: 10.1021/j100373a096

    25. [25]

      Li Y J, Pritchett T M, Huang J D, Ke M R, Shao P, Sun W F. Photophysics and Nonlinear Absorption of Peripheral-Substituted Zinc Phthalocyanines[J]. J. Phys. Chem. A, 2008,112:7200-7207. doi: 10.1021/jp7108835

    26. [26]

      Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Van Stryland E W. Sensitive Measurement of Optical Nonlinearities Using a Single Beam[J]. IEEE J. Quantum Electron., 1990,26(4):760-769. doi: 10.1109/3.53394

    27. [27]

      He G S, Swiatkiewicz J, Yan J, Prasad P N. Two-Photon Excitation and Optical Spatial-Profile Reshaping via a Nonlinear Absorbing Medium[J]. J. Phys. Chem. A, 2000,104(20):4805-4810. doi: 10.1021/jp000370+

    28. [28]

      Mak N K, Leung W N, Wong R N S, Huang D P, Lung M L, Lau Y K, Chang C K. Involvement of Both Endoplasmic Reticulum and Mitochondria in Photokilling of Nasopharyngeal Carcinoma Cells by the Photosensitizer Zn-BC-AM[J]. Biochem. Pharmacol., 2004,68:2387-2396. doi: 10.1016/j.bcp.2004.08.024

    29. [29]

      REN L L, PENG X X, WANG S J, XIAO L W, LI Z Q. Syntheses, Spectral and Electrochemical Properties, Antitumor Activities of Manganese/Zinc Complexes with Porphyrin Modified by 5-Fluorouracil[J]. Chinese J. Inorg. Chem., 2019,35(6):965-970.  

    30. [30]

      Strachan J P, Gentemann S, Seth J, Kalsbeck W A, Lindsey J S, Holten D, Bocian D F. Effects of Orbital Ordering on Electronic Communication in Multiporphyrin Arrays[J]. J. Am. Chem. Soc., 1997,119:11191-11201. doi: 10.1021/ja971678q

    31. [31]

      ZHANG W Y, ZHANG X J, TONG J L, CHEN T C, TIAN J Q, HU R, WANG Z M. Optical Properties and Biological Applications of Meso-tetrakis (p-methylphenyl) Porphyrin and Its Cobalt Complex[J]. Chinese J. Inorg. Chem., 2018,34(12):2161-2171. doi: 10.11862/CJIC.2018.279

    32. [32]

      Ke H Z, Wang H D, Wong W K, Mak N K, Kwong D W, Wong K L, Tam H L. Responsive and Mitochondria-Specific Ruthenium (Ⅱ) Complex for Dual In Vitro Applications: Two-Photon (Near-Infrared) Induced Imaging and Regioselective Cell Killing[J]. Chem. Commun., 2010,46:6678-6680. doi: 10.1039/c0cc01848a

    33. [33]

      Schmitt J, Heitz V, Sour A, Bolze F, Ftouni H, Nicoud J, Flamigni L, Ventura B. Diketopyrrolopyrrole-Porphyrin Conjugates with High Two-Photon Absorption and Singlet Oxygen Generation for Two-Photon Photodynamic Therapy[J]. Angew. Chem. Int. Ed., 2015,54(1):169-173. doi: 10.1002/anie.201407537

    34. [34]

      Engelmann F M, Mayer I, Gabrielli D S, Toma H E, Kowaltowski A J, Araki K, Baptista M S. Interaction of Cationic meso-Porphyrins with Liposomes, Mitochondria and Erythrocytes[J]. J. Bioenerg. Biomembr., 2007,39:175-185. doi: 10.1007/s10863-007-9075-0

    35. [35]

      Zhang J X, Zhou J W, Chan C F, Lau C K, Kwong W J, Tam H L, Mak N K, Wong K L, Wong W K. Comparative Studies of the Cellular Uptake, Subcellular Localization, and Cytotoxic and Phototoxic Antitumor Properties of Ruthenium (Ⅱ)-Porphyrin Conjugates with Different Linkers[J]. Bioconjugate Chem., 2012,23:1623-1638. doi: 10.1021/bc300201h

  • 加载中
    1. [1]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    2. [2]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    3. [3]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    4. [4]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    5. [5]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    6. [6]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    7. [7]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    8. [8]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    9. [9]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    10. [10]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    11. [11]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    18. [18]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    19. [19]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    20. [20]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

Metrics
  • PDF Downloads(7)
  • Abstract views(779)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return