Citation: Chao HUANG, Kai-Teng WANG, Dong-Mei CHEN, Bi-Xue ZHU, Ji-Hong LU. Synthesis, Crystal Structures, Luminescence, and Vapor Adsorption Properties of 1D Mercury(Ⅱ) Coordination Polymers Based on Two Dipyridylamide Ligands[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2291-2298. doi: 10.11862/CJIC.2022.236 shu

Synthesis, Crystal Structures, Luminescence, and Vapor Adsorption Properties of 1D Mercury(Ⅱ) Coordination Polymers Based on Two Dipyridylamide Ligands

  • Corresponding author: Ji-Hong LU, lujhgzu@163.com
  • Received Date: 10 April 2022
    Revised Date: 30 August 2022

Figures(8)

  • Two coordination polymers, {[Hg2(L1) (μ2-I)2I2] ·2DMF·H2O}n (1) and {[Hg(L2)I2] ·H2O}n (2), have been designed and synthesized from two dipyridylamide ligands (L1 and L2) with mercury(Ⅱ) iodide, respectively. X-ray crystallographic analyses show that both the two complexes exist as 1D zig-zag chain structures but exhibit different configurations by slightly adjusted 3-and 4-pyridyl nitrogen atoms from the ligands. Each Hg(Ⅱ) center of the two complexes is four-coordinated with distorted tetrahedral geometry. In complex 1, the Hg(Ⅱ) center is coordinated by one 3-pyridyl nitrogen atom and three iodide anions in a 1∶2 molar ratio of L1 and mercury iodide. In complex 2, the Hg(Ⅱ) center is coordinated by two 4-pyridyl nitrogen atoms and two iodide anions in a 1∶1 molar ratio of L2 and mercury iodide. In addition, the thermal stabilities, luminescence properties, together with vapor adsorption properties of the two complexes were investigated.
  • 加载中
    1. [1]

      Ovsyannikov A, Solovieva S, Antipin I, Ferlay S. Coordination Polymers Based on Calixarene Derivatives: Structures and Properties[J]. Coord. Chem. Rev., 2017,352:151-186. doi: 10.1016/j.ccr.2017.09.004

    2. [2]

      Sun J K, Yang X D, Yang G Y, Zhang J. Bipyridinium Derivative-Based Coordination Polymers: From Synthesis to Materials Applications[J]. Coord. Chem. Rev., 2019,378:533-560. doi: 10.1016/j.ccr.2017.10.029

    3. [3]

      Li N, Feng R, Zhu J, Chang Z, Bu X H. Conformation Versatility of Ligands in Coordination Polymers: From Structural Diversity to Properties and Applications[J]. Coord. Chem. Rev., 2018,375:558-586. doi: 10.1016/j.ccr.2018.05.016

    4. [4]

      Liu J Q, Luo Z D, Pan Y, Singh A K, Trivedi M, Kumar A. Recent Developments in Luminescent Coordination Polymers: Designing Strategies, Sensing Application and Theoretical Evidences[J]. Coord. Chem. Rev., 2020,406213145. doi: 10.1016/j.ccr.2019.213145

    5. [5]

      Tay H M, Kyratzis N, Thoonen S, Boer S A, Turner D R, Hua C. Synthetic Strategies towards Chiral Coordination Polymers[J]. Coord. Chem. Rev., 2021,435213763. doi: 10.1016/j.ccr.2020.213763

    6. [6]

      Chen Y T, Ding Y, He S X, Huang C, Chen D M, Zhu B X. Synthesis, Crystal Structures and Vapor Adsorption Properties of Mercury(Ⅱ) Coordination Polymers Derived from Two Dipyridylamide Ligands[J]. Z. Anorg. Allg. Chem., 2021,647:623-628. doi: 10.1002/zaac.202000346

    7. [7]

      Li J X, Qin Z B, Li Y H, Cui G H. Sonochemical Synthesis and Properties of Two New Nanostructured Silver Coordination Polymers[J]. Ultrason. Sonochem., 2018,48:127-135. doi: 10.1016/j.ultsonch.2018.05.016

    8. [8]

      Zhang H, Liu G, Shi L, Liu H, Wang T, Ye J. Engineering Coordination Polymers for Photocatalysis[J]. Nano Energy, 2016,22:149-168. doi: 10.1016/j.nanoen.2016.01.029

    9. [9]

      Rosa I M L, Costa M C S, Vitto B S, Amorim L, Correa C C, Pinheiro C B, Doriguetto A C. Influence of Synthetic Methods in the Structure and Dimensionality of Coordination Polymers[J]. Cryst. Growth Des., 2016,16:1606-1616. doi: 10.1021/acs.cgd.5b01716

    10. [10]

      WANG L B, WANG J J, YUE E L, TANG L, WANG X, HOU X Y, ZHANG Y Q. Synthesis, Structure, Magnetic and Photocatalytic Properties of Nickel(Ⅱ) Coordination Polymer Based on 1-(3, 5-Dicar-boxybenzyl)-1H-pyrazole-3, 5-dicarboxylic Acid Ligand[J]. Chinese J. Inorg. Chem., 2021,37(4):744-750.

    11. [11]

      Feng X, Guo N, Chen H, Wang H, Yue L, Chen X, Ng S W, Liu X, Ma L, Wang L. A Series of Anionic Host Coordination Polymers Based on Azoxybenzene Carboxylate: Structures, Luminescence and Magnetic Properties[J]. Dalton Trans., 2017,46:14192-14200. doi: 10.1039/C7DT02974H

    12. [12]

      Fan L, Zhang Y, Liang J, Wang X, Lv H, Wang J, Zhao L, Zhang X. Structural Diversity, Magnetic Properties, and Luminescence Sensing of Five 3D Coordination Polymers Derived from Designed 3, 5-Di(2', 4'-dicarboxylphenyl)benozoic Acid[J]. CrystEngComm, 2018,20:4752-4762. doi: 10.1039/C8CE00877A

    13. [13]

      Yang X G, Zhai Z M, Lu X M, Zhao Y, Chang X H, Ma L F. Room Temperature Phosphorescence of Mn(Ⅱ) and Zn(Ⅱ) Coordination Polymers for Photoelectron Response Applications[J]. Dalton Trans., 2019,48:10785-10789. doi: 10.1039/C9DT02178G

    14. [14]

      YANG X Q, HE C Y, ZHANG Y H, MU X G, JIANG S. Synthesis, Crystal Structure and Properties of Mn(Ⅱ)/Co(Ⅱ) Coordination Polymers Based on 1, 4-Bis(imidazol-1-yl) benzene[J]. Chinese J. Inorg. Chem., 2021,37(8):1364-1374.  

    15. [15]

      Tzeng B C, Chang T Y, Wei S L, Sheu H S. Reversible Phase Transformation and Mechanochromic Luminescence of Zn-Dipyridylamide-Based Coordination Frameworks[J]. Chem. Eur. J., 2012,18:5105-5112. doi: 10.1002/chem.201103405

    16. [16]

      Liu G C, Li Y, Xiong Y, Liu X X, Li Q M, Zhang J W, Lin H Y, Li X W. Spacers-Directed Structural Diversity of Co(Ⅱ)/Zn(Ⅱ) Complexes Based on S-/O-Bridged Dipyridylamides: Electrochemical, Fluorescent Recognition Behavior and Photocatalytic Properties[J]. J. Coord. Chem., 2018,71:483-501. doi: 10.1080/00958972.2018.1438606

    17. [17]

      Cardile S A, Burchell T J, Jennings M C, Puddephatt R J. Self-Assembly of Polymers through Dynamic Coordination Chemistry and Hydrogen Bonding: Polymers from Mercury (Ⅱ) Halides and Bis(amidopyridine) Ligands[J]. J. Inorg. Organomet. Polym. Mater., 2007,17:235-240. doi: 10.1007/s10904-006-9088-x

    18. [18]

      Fletcher B E, Peach M J G, Evans N H. Rapidly Accessible"Click" Rotaxanes Utilizing a Single Amide Hydrogen Bond Templating Motif[J]. Org. Biomol. Chem., 2017,15:2797-2803. doi: 10.1039/C7OB00284J

    19. [19]

      Han L, Zhang K, Ishida H, Froimowicz P. Study of the Effects of Intramolecular and Intermolecular Hydrogen-Bonding Systems on the Polymerization of Amide-Containing Benzoxazines[J]. Macromol. Chem. Phys., 2017,2181600562. doi: 10.1002/macp.201600562

    20. [20]

      Henderson W R, Kumar A, Abboud K A, Castellano R K. Influence of Amide Connectivity on the Hydrogen-Bond-Directed Self-Assembly of [n. n]Paracyclophanes[J]. Chem. Eur. J., 2020,26:17588-17597. doi: 10.1002/chem.202003909

    21. [21]

      Markad D, Mandal S K. An Exploration into the Amide-Pseudo Amide Hydrogen Bonding Synthon between a New Coformer with Two Primary Amide Groups and Theophylline[J]. CrystEngComm, 2017,19:7112-7124. doi: 10.1039/C7CE01666B

    22. [22]

      Kaneko R, Wu G, Sugawa K, Otsuki J. Intermolecular Electronic Communication in Tetrathiafulvalene Derivatives with Hydrogen-Bonding Amide Units[J]. J. Org. Chem., 2018,7:897-901.

    23. [23]

      Sheldrick G M. SHELXT-Integrated Space-Group and Crystal-Structure Determination[J]. Acta Crystallogr. Sect. A, 2015,A71:3-8.

    24. [24]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program[J]. J. Appl. Cryst., 2009,42:339-341. doi: 10.1107/S0021889808042726

    25. [25]

      Yang L, Powell D R, Houser R P. Structural Variation in Copper(Ⅰ) Complexes with Pyridylmethylamide Ligands: Structural Analysis with a New Four-Coordinate Geometry Index, τ4[J]. Dalton Trans., 2007:955-964.

    26. [26]

      Lin L Z, Zhong Q X, Hong J T, Chen H L, Chen W T. Syntheses, Structures, Photoluminescence and Semiconductor Properties of Two Novel Mercury-Lanthanide Complexes with a Three-Dimensional Open Framework[J]. Inorg. Chim. Acta, 2018,479:30-35. doi: 10.1016/j.ica.2018.04.039

    27. [27]

      Heering C, Francis B, Nateghi B, Makhloufi G, Lüdeke S, Janiak C. Syntheses, Structures and Properties of Group 12 Element (Zn, Cd, Hg) Coordination Polymers with a Mixed-Functional Phosphonate-Biphenylcarboxylate Linker[J]. CrystEngComm, 2016,18:5209-5223. doi: 10.1039/C6CE00587J

    28. [28]

      Bigdeli F, Hosseini-Monfared H, Morsali A, Mayer P. Synthesis of a New Hg(Ⅱ) Coordination Polymer: Ultrasonic-Assisted Synthesis and Mechanical Preparation of Nanostructure[J]. Ultrason. Sonochem., 2017,39:669-675. doi: 10.1016/j.ultsonch.2017.03.055

    29. [29]

      Chhetri P M, Yang X K, Chen J D. Isostructural Hg(Ⅱ) Halide Coordination Polymers: A Comparison of Powder XRD, IR, Emission and Hirshfeld Surface Analysis[J]. J. Mol. Struct., 2021,1239130543. doi: 10.1016/j.molstruc.2021.130543

    30. [30]

      Xu C, Li L, Wang Y, Guo Q, Wang X, Hou H, Fan Y. Three-Dimensional Cd(Ⅱ) Coordination Polymers Based on Semirigid Bis(methyl-benzimidazole) and Aromatic Polycarboxylates: Syntheses, Topological Structures and Photoluminescent Properties[J]. Cryst. Growth Des., 2011,11:4667-4675. doi: 10.1021/cg200961a

    31. [31]

      Huang C, Yang J, Chen J L, Chen D M, Zhu B X. Synthesis and Crystal Structures of Metallomacrocyclic and Helical Hg(Ⅱ) Complexes with Two Bis(pyridylurea) Ligands[J]. Inorg. Chim. Acta, 2018,483:252-257. doi: 10.1016/j.ica.2018.08.020

    32. [32]

      Huang C, Luo X, Zhai J, Chen Y, Chen D M, Zhu B X. [2+2] or[4+ 4] Metallamacrocycle: Synthesis and Crystal Structures of Hg(Ⅱ) Complexes Derived from Two Flexible Bis(pyridylurea) Ligands[J]. Polyhedron, 2019,165:111-115. doi: 10.1016/j.poly.2019.03.012

    33. [33]

      Chen D M, Wu X F, Liu Y J, Huang C, Zhu B X. Synthesis, Crystal Structures and Vapor Adsorption Properties of Hg(Ⅱ) and Cd(Ⅱ) Coordination Polymers Derived from Two Hydrazone Schiff Base Ligands[J]. Inorg. Chim. Acta, 2019,494:181-186. doi: 10.1016/j.ica.2019.05.026

  • 加载中
    1. [1]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    2. [2]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    3. [3]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    4. [4]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    5. [5]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    6. [6]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    7. [7]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    8. [8]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    9. [9]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    10. [10]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    11. [11]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    12. [12]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    13. [13]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    14. [14]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    15. [15]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    16. [16]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    17. [17]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    18. [18]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

Metrics
  • PDF Downloads(2)
  • Abstract views(432)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return