Citation: Fen-Fang LI, Jing HE. Synthesis, Structural and Magnetic Characterization of Fe(Ⅱ)/Co(Ⅱ)Isomorphous Complexes Based on a Dipyrazole-Containing Tetracarboxylate Ligand[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2259-2266. doi: 10.11862/CJIC.2022.226 shu

Synthesis, Structural and Magnetic Characterization of Fe(Ⅱ)/Co(Ⅱ)Isomorphous Complexes Based on a Dipyrazole-Containing Tetracarboxylate Ligand

  • Corresponding author: Fen-Fang LI, lffspring@126.com
  • Received Date: 14 March 2022
    Revised Date: 16 September 2022

Figures(7)

  • We herein report the synthetic, structural, and magnetic studies on two 2D isomorphous complexes, {(NH2(CH3)2)2[M(L)]}n (M=Fe (1), Co (2), H4L=1, 1'-(1, 4-phenylenebis(methylene))bis(1H-pyrazole -3, 5-dicarboxylic acid)). From single crystal X-ray crystallography, it is found that the complexes crystallized in the same space group monoclinic P21 / n and have six - coordinate octahedron structures. The framework features anionic having a -2 charge, and the electroneutrality is achieved by the incorporation of the protonated dimethylamine by hydrolysis of DMF in the voids of the net. In the two polymers, each ligand bridges two metal(Ⅱ) ions through cheating N, O atoms of the pyrazole ring and monodentate O atoms of the same pyrazole ring, forming ⋯M-L-M-L⋯ chains and the 1D chains intersect to form an infinite 2D network which contains nearly square M4L4 units. Magnetic susceptibility measurements indicate the presence of antiferromagnetic properties in complexes 1 and 2.
  • 加载中
    1. [1]

      Gándara F, Furukawa H, Lee S, Yaghi O M. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2014,136(14):5271-5274. doi: 10.1021/ja501606h

    2. [2]

      Meng H, Zhao C, Nie M, Wang C R, Wang T S. Optically Controlled Molecular Metallofullerene Magnetism via an Azobenzene-Functionalized Metal-Organic Framework[J]. ACS Appl. Mater. Interfaces, 2018,10(38):32607-32612. doi: 10.1021/acsami.8b11098

    3. [3]

      Zorlu Y, Erbahar D, Çetinkaya A, Bulut A, Erkal T S, Yazaydin A O, Beckmann J, Yücesan G. A Cobalt Arylphosphonate MOF-superior Stability, Sorption and Magnetism[J]. Chem. Commun., 2019,55:3053-3056. doi: 10.1039/C8CC09655D

    4. [4]

      Lv X L, Yuan S, Xie L H, Darke H F, Chen Y, He T, Dong C, Wang B, Zhang Y Z, Li J R, Zhou H C. Ligand Rigidification for Enhancing the Stability of Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2019,141(26):10283-10293. doi: 10.1021/jacs.9b02947

    5. [5]

      Wu Y P, Tian J W, Liu S B, Li B, Zhao J, Ma L F, Li D S, Lan Y Q, Bu X H. Bi-microporous Metal-Organic Frameworks with Cubane[M4(OH)4] (M=Ni, Co) Clusters and Pore-Space Partition for Electrocatalytic Methanol Oxidation Reaction[J]. Angew. Chem. Int. Ed., 2019,58:12185-12189. doi: 10.1002/anie.201907136

    6. [6]

      Wang P L, Xie L H, Joseph E A, Li J R, Su X O, Zhou H C. Metal-Organic Frameworks for Food Safety[J]. Chem. Rev., 2019,119(18):10638-10690. doi: 10.1021/acs.chemrev.9b00257

    7. [7]

      Zhu L, Liu X Q, Jiang H L, Sun L B. Metal-Organic Frameworks for Heterogeneous Basic Catalysis[J]. Chem. Rev., 2017,117(12):8129-8176. doi: 10.1021/acs.chemrev.7b00091

    8. [8]

      Liang J, Huang Y B, Cao R. Metal-Organic Frameworks and Porous Organic Polymers for Sustainable Fixation of Carbon Dioxide into Cyclic Carbonates[J]. Coord. Chem. Rev., 2019,378(1):32-65.

    9. [9]

      Miller J S, Gatteschi D. Molecule-Based Magnets[J]. Chem. Soc. Rev., 2011,40:3065-3066. doi: 10.1039/c1cs90019f

    10. [10]

      Yu H Y, Xu L, Wang D, Wei Q, Pan J, Xue Z Z, Ma Z L. Synthesis, Crystal Structure and Magnetic Property of a 3D Cu-Organic Framework[J]. Inorg. Chem. Commun., 2020,112107713. doi: 10.1016/j.inoche.2019.107713

    11. [11]

      Pachfule P, Das R, Poddar P, Banerjee R. Structural, Magnetic, and Gas Adsorption Study of a Series of Partially Fluorinated Metal-Organic Frameworks (HF-MOFs)[J]. Inorg. Chem., 2011,50(9):3855-3865. doi: 10.1021/ic1017246

    12. [12]

      Mukherjee S, Samanta D, Mukherjee P S. New Structural Topologies in a Series of 3d Metal Complexes with Isomeric Phenylenediacetates and 1, 3, 5-Tris(1-imidazolyl)benzene Ligand: Syntheses, Structures, and Magnetic and Luminescence Properties[J]. Cryst. Growth Des., 2013,13(12):5335-5343. doi: 10.1021/cg4011967

    13. [13]

      Zhao Y, Chang X H, Liu G Z, Ma L F, Wang L Y. Five Mn(Ⅱ) Coordination Polymers Based on 2, 3, 5, 5-Biphenyl Tetracarboxylic Acid: Syntheses, Structures, and Magnetic Properties[J]. Cryst. Growth Des., 2015,15(2):966-974. doi: 10.1021/cg501768f

    14. [14]

      Yue Q, Gao E Q. Azide and Carboxylate as Simultaneous Coupler for Magnetic Coordination Polymers[J]. Coord. Chem. Rev., 2019,382:1-31. doi: 10.1016/j.ccr.2018.12.002

    15. [15]

      Cui Y J, Zhang J, He H J, Qian G D. Photonic Functional Metal-Organic Frameworks[J]. Chem. Soc. Rev., 2018,47:5740-5785. doi: 10.1039/C7CS00879A

    16. [16]

      Gusev A, Nemec I, Herchel R, Shul'gin V, Ryush I, Kiskin M, Efimov N, Ugolkova E, Minin V, Lyssenko K, Eremenko I, Linert W. Copper(Ⅱ) Self-Assembled Clusters of Bis((pyridin-2-yl)-1, 2, 4-triazol-3-yl)alkanes. Unusual Rearrangement of Ligands Under Reaction Conditions[J]. Dalton Trans., 2019,48:3052-3060. doi: 10.1039/C8DT04816A

    17. [17]

      Bernini M C, de Paz J R, Snejko N, Saez-Puche R, Gutierrez-Puebla E, Monge M A. Unusual Magnetic Behaviors and Electronic Configurations Driven by Diverse Co(Ⅱ) or Mn(Ⅱ) MOF Architectures[J]. Inorg. Chem., 2014,53(24):12885-12895. doi: 10.1021/ic501898x

    18. [18]

      Uchida K, Cosquer G, Sugisaki K, Matsuoka H, Sato K, Breedlove B K, Yamashita M. Isostructural M(Ⅱ) Complexes (M=Mn, Fe, Co) with Field-Induced Slow Magnetic Relaxation for Mn and Co Complexes[J]. Dalton Trans., 2019,48:12023-12030. doi: 10.1039/C8DT02150C

    19. [19]

      Zhang J Y, Wang K, Li X B, Gao E Q. Magnetic and Slow Relaxation of Magnetization in Chain-Based Mn, Co, and Ni Coordination Frameworks[J]. Inorg. Chem., 2014,53(17):9306-9314. doi: 10.1021/ic5014279

    20. [20]

      Su F, Lu L P, Feng S S, Zhu M L, Gao Z Q, Dong Y H. Synthesis, Structures and Magnetic Properties in 3d-Electron-Rich Isostructural Complexes Based on Chains with Sole Syn-Anti Carboxylate Bridges[J]. Dalton Trans., 2015,44:7213-7222. doi: 10.1039/C5DT00412H

    21. [21]

      Gusev A, Nemec I, Herchel R, Riush I, Titis J, Boca R, Lyssenko K, Kiskin M, Eremenko I, Linert W. Structural and Magnetic Characterization of Ni(Ⅱ), Co(Ⅱ), and Fe(Ⅱ) Binuclear Complexes on a Bis(pyridyltriazolyl)alkane Basis[J]. Dalton Trans., 2019,48:10526-10536. doi: 10.1039/C9DT01391A

    22. [22]

      Blatov V A, Shevchenko A P, Proserpio D M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro[J]. Cryst. Growth Des., 2014,14(7):3576-3586. doi: 10.1021/cg500498k

    23. [23]

      Chen M S, Deng Y F, Zhang C H, Sheng L B, Lu W H, Sun J B. Solvothermal Synthesis, Crystal Structure and Property of a Three-Dimensional Fe(Ⅱ) Complex: [Fe(INAIP)(DMF)]n·0.5nDMF[J]. Chin. J. Struct. Chem., 2021,40(5):625-630.

    24. [24]

      Whitfield T, Zheng L M, Wang X, Jacobson A J. Syntheses and Characterization of Co(pydc)(H2O)2 and Ni(pydc)(H2O) (pydc=3, 5-Pyridinedicarboxylate)[J]. Solid State Sci., 2001,3:829-835. doi: 10.1016/S1293-2558(01)01218-3

    25. [25]

      Coronado E, Galan-Mascaros J R, Gomez-Garcia C J, Murcia-Martinez A. Chiral Molecular Magnets: Synthesis, Structure, and Magnetic Behavior of the Series[M(L-tart)] (M=Mn, Fe, Co, Ni; L-tart= (2R, 3R)-(+)-Tartrate)[J]. Chem. Eur. J., 2006,12:3484-3492. doi: 10.1002/chem.200501351

    26. [26]

      Zhao N, Li Y, Gu J Z, Kirillova M V, Kirillov A M. Hydrothermal Generation, Structural Versatility and Properties of Meta(Ⅱ)-Organic Architectures Driven by a Pyridine-Tricarboxylic Acid[J]. Dalton Trans., 2019,48:8361-8374. doi: 10.1039/C9DT01253B

  • 加载中
    1. [1]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    2. [2]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    3. [3]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    4. [4]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    5. [5]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    6. [6]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    7. [7]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    8. [8]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    9. [9]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    10. [10]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    11. [11]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    12. [12]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    13. [13]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    14. [14]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    15. [15]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    16. [16]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    17. [17]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    18. [18]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    19. [19]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    20. [20]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

Metrics
  • PDF Downloads(2)
  • Abstract views(620)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return