Citation: Ya-Nan YUAN, Zi-Xuan WANG, Zhao-Yang WANG, Yao-Yao SONG, Qing-Lun WANG, Chun YANG. Zinc(Ⅱ) and Cadmium(Ⅲ) Complexes Derived from 4′-(2-Pyridyl)-2, 2′: 6′, 2″-terpyridine: Crystal Structures and Fluorescence Property[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(9): 1878-1886. doi: 10.11862/CJIC.2022.194 shu

Zinc(Ⅱ) and Cadmium(Ⅲ) Complexes Derived from 4′-(2-Pyridyl)-2, 2′: 6′, 2″-terpyridine: Crystal Structures and Fluorescence Property

Figures(9)

  • Complexes [Zn(2-pyterpy)2](ClO4)2·0.25H2O (1) and [Cd(2-pyterpy)2]2(ClO4)4·2.33H2O·CH3OH(2)(2-pyterpy=4'-(2-pyridyl)-2, 2'∶6', 2″-terpyridine) were synthesized under solvothermal conditions, and structurally characterized by elemental analysis, FT-IR spectra, X-ray single crystal diffraction and powder X-ray diffraction. X-ray single crystal diffraction results show that they crystallize in the triclinic system with the P1 space group. In solidstate, complexes 1 and 2 showed the maxima emission band approximately at 539 and 547 nm upon excitation at 405 nm, respectively. In methanol solution, complexes 1 and 2 exhibited emissions at 408 and 371 nm upon excitation at 357 and 352 nm, respectively. The metastable-state photoacid mPAH1 showed fluorescence at 556 nm upon excitation at 467 nm. When complex 1 was titrated with mPAH1, the fluorescence of complex 1 at 408 nm was quenched by mPAH1 with a quenching constant KSV of 2.961×104 L·mol-1, but the fluorescence lifetime of complex 1 remained nearly unchanged, which is attributed to the inner filter effect. Conversely, titration of mPAH1 with complex 1 resulted in enhanced fluorescence of the mixed solution at 556 nm, which is attributed to partial protonation of complex 1 by mPAH1.
  • 加载中
    1. [1]

      Chen Y S, Solel E, Huang Y F, Wang C L, Tu T H, Keinan E, Chan Y T. Chemical Mimicry of Viral Capsid Self-Assembly via Corannulenebased Pentatopic Tectons[J]. Nat. Commun., 2019,103443. doi: 10.1038/s41467-019-11457-6

    2. [2]

      Barboiu M, Prodi L, Montalti M, Zaccheroni N, Kyritsakas N, Lehn J M. Dynamic Chemical Devices: Modulation of Photophysical Properties by Reversible, Ion-Triggered and Proton-Fuelled Nanomechanical Shape-Flipping Molecular Motions[J]. Chem. Eur. J., 2004,10:2953-2959. doi: 10.1002/chem.200306045

    3. [3]

      Bhowmik S, Ghosh B N, Marjomäki V, Rissanen K. Nanomolar Pyrophosphate Detection in Water and in a Self-Assembled Hydrogel of a Simple Terpyridine-Zn2+ Complex[J]. J. Am. Chem. Soc., 2014,136:5543-5546. doi: 10.1021/ja4128949

    4. [4]

      Hsu T W, Hsu H C, Chan H Y, Fang J M. A Terpyridine Zinc Complex for Selective Detection of Lipid Pyrophosphates: A Model System for Monitoring Bacterial O-and N-Transglycosylations[J]. J. Org. Chem., 2020,85:12747-12753. doi: 10.1021/acs.joc.0c01252

    5. [5]

      You W, Huang W, Fan Y, Yao C. Studies on Two Cadmium(Ⅱ) and Two Zinc(Ⅱ) Complexes of 4'-Chloro-2, 2'∶6', 2″-terpyridine with 1∶1 or 1∶2 Ratio of Metal and Ligand[J]. J. Coord. Chem., 2009,62(13):2125-2137. doi: 10.1080/00958970902780606

    6. [6]

      Mehrani A, Morsali A, Ebrahimpour P. Synthesis and Structural Characterization of Zinc Coordination Compounds with Pyterpy; New Precursors for Preparation of Zinc Oxide Nano-Particles with Different Morphologies[J]. J. Coord. Chem., 2013,66(5):856-867. doi: 10.1080/00958972.2013.766334

    7. [7]

      Ding Z Y, Li H Q, Gao W Q, Zhang Y Q, Liu C H, Zhu Y Y. Detection of Picric Acid by Terpy-Based Metallo-Supramolecular Fluorescent Coordination Polymers in Aqueous Media[J]. Chin. J. Chem., 2017,35:447-456. doi: 10.1002/cjoc.201600885

    8. [8]

      Lakshmanan R, Shivaprakash N C, Sindhu S. Switching from Sky Blue to Deep Green Fluorescent Zn(Ⅱ) Complexes for OLEDs Applications[J]. J. Lumin., 2018,196:136-145. doi: 10.1016/j.jlumin.2017.12.031

    9. [9]

      Chen Y Y, Tao Y T, Lin H C. Novel Self-Assembled Metallo-Homopolymers and Metallo-alt-Copolymer Containing Terpyridyl Zinc(Ⅱ) Moieties[J]. Macromolecules, 2006,39:8559-8566. doi: 10.1021/ma0618629

    10. [10]

      Mehrani A, Morsali A. Synthesis and Crystal Structures of Mercury(Ⅱ) and Cadmium(Ⅱ) Coordination Compounds Using 4'-(4-Pyridyl)-2, 2'∶ 6', 2'-terpyridine Ligand and Their Thermolysis to Nanometal Oxides[J]. J. Mol. Struct., 2014,1074:596-601. doi: 10.1016/j.molstruc.2014.05.071

    11. [11]

      Chen S, Huang X, Decurtins S, Albrecht C, Liu S X. A Terpy-Functionalized Benzodifuran-Based Fluorescent Probe for In Vitro Monitoring Cellular Zn(Ⅱ) Uptake[J]. Polyhedron, 2017,134:287-294. doi: 10.1016/j.poly.2017.06.037

    12. [12]

      Harriman A, Rostron J P, Cesario M, Ulrich G, Ziessel R. Electron Transfer in Self-Assembled Orthogonal Structures[J]. J. Phys. Chem. A, 2006,110:7994-8002. doi: 10.1021/jp054992c

    13. [13]

      Bi X M, Pang Y. Optical Response of Terpyridine Ligands to Zinc Binding: A Close Look at the Substitution Effect by Spectroscopic Studies at Low Temperature[J]. J. Phys. Chem. B, 2016,120:3311-3317. doi: 10.1021/acs.jpcb.6b00515

    14. [14]

      Berton C, Busiello D M, Zamuner S, Solari E, Scopelliti R, Fadaei-Tirani F, Severin K, Pezzato C. Thermodynamics and Kinetics of Protonated Merocyanine Photoacids in Water[J]. Chem. Sci., 2020,11:8457-8468. doi: 10.1039/D0SC03152F

    15. [15]

      Jansze S M, Cecot G, Severin K. Reversible Disassembly of Metallasupramolecular Structures Mediated by a Metastable-State Photoacid[J]. Chem. Sci., 2018,9:4253-4257. doi: 10.1039/C8SC01108G

    16. [16]

      Tatum L A, Foy J T, Aprahamian I. Waste Management of Chemically Activated Switches: Using a Photoacid to Eliminate Accumulation of Side Products[J]. J. Am. Chem. Soc., 2014,136:17438-17441. doi: 10.1021/ja511135k

    17. [17]

      Alghazwat O, Elgattar A, Khalil T, Wang Z Z, Liao Y. Red-Light Responsive Metastable-State Photoacid[J]. Dyes Pigment., 2019,171:107719-107723. doi: 10.1016/j.dyepig.2019.107719

    18. [18]

      Vallet J, Micheau J C, Coudret C. Switching a pH Indicator by a Reversible Photoacid: A Quantitative Analysis of a New Two-Component Photochromic System[J]. Dyes Pigment., 2016,125:179-184. doi: 10.1016/j.dyepig.2015.10.025

    19. [19]

      Yu M, Hu J M, Wang Y. Synthesis and Characterization of a Terpyridine Ligand and Its Interactions with Selected Metal Ions[J]. Chin. J.Struc. Chem., 2020,39(4):783-792.

    20. [20]

      Wang J, Hanan G S. A Facile Route to Sterically Hindered and Nonhindered 4'-Aryl-2, 2'∶6', 2″-terpyridines[J]. Synlett, 2005,8:1251-1254.

    21. [21]

      Shi Z, Peng P, Strohecker D, Liao Y. Long-Lived Photoacid Based upon a Photochromic Reaction[J]. J. Am. Chem. Soc., 2011,133:14699-14703. doi: 10.1021/ja203851c

    22. [22]

      Nolan E M, Lippard S J. Small-Molecule Fluorescent Sensors for Investigating Zinc Metalloneurochemistry[J]. Acc. Chem. Res., 2009,42(1):193-203. doi: 10.1021/ar8001409

    23. [23]

      PENG Y F, LIU T B, WU Q Y, WU M Q. Syntheses and Luminescence of Three Zinc Complexes Constructed by Rigid 4-Substituted Bis(1, 2, 4-triazole) Ligand[J]. Chinese J. Inorg. Chem., 2022,38(2):344-352.  

    24. [24]

      Thompson J R, Goodman-Rendall K A S, Leznoff D B. Birefringent, Emissive Cyanometallate-Based Coordination Polymer Materials Containing Group(Ⅱ) Metal-Terpyridine Building Blocks[J]. Polyhedron, 2016,108:93-99. doi: 10.1016/j.poly.2015.12.026

    25. [25]

      Klajn R. Spiropyran-Based Dynamic Materials[J]. Chem. Soc. Rev., 2014,43(1):148-184. doi: 10.1039/C3CS60181A

    26. [26]

      Kisin-Finfer E, Redy-Keisar O, Roth M, Ben-Eliyahu R, Shabat D. Molecular Insight into Long-Wavelength Fluorogenic Dye Design: Hydrogen Bond Induces Activation of a Dormant Acceptor[J]. Chem. Eur. J., 2015,21:18566-18570. doi: 10.1002/chem.201504133

    27. [27]

      Wang C, Hao X Q, Wang M, Guo C L, Xu B Q, Tan E N, Zhang Y Y, Yu Y H, Li Z Y, Yang H B, Song M P, Li X P. Self-Assembly of Giant Supramolecular Cubes with Terpyridine Ligands as Vertices and Metals on Edges[J]. Chem. Sci., 2014,5:1221-1226. doi: 10.1039/C3SC52965G

    28. [28]

      Bi X M, Liu B, McDonald L, Pang Y. Excited-State Intramolecular Proton Transfer (ESIPT) of Fluorescent Flavonoid Dyes: A Close Look by Low Temperature Fluorescence[J]. J. Phys. Chem. B, 2017,121:4981-4986. doi: 10.1021/acs.jpcb.7b01885

    29. [29]

      Jia P P, Xu L, Hu Y X, Li W J, Wang X Q, Ling Q H, Shi X L, Yin G Q, Li X P, Sun H T, Jiang Y R, Yang H B. Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity[J]. J. Am. Chem. Soc., 2021,143:399-408. doi: 10.1021/jacs.0c11370

  • 加载中
    1. [1]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    2. [2]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    5. [5]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    6. [6]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    7. [7]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    8. [8]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    9. [9]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    10. [10]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    11. [11]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    12. [12]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    13. [13]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    14. [14]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    15. [15]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    16. [16]

      Zhengyi ShiJie YinYang XiaoZhangrong HouFei SongJianping WangQingyi TongChangxing QiYonghui Zhang . Unprecedented sesquiterpene-polycyclic polyprenylated acylphloroglucinol adduct against acute myeloid leukemia via inhibiting mitochondrial complex Ⅴ. Chinese Chemical Letters, 2024, 35(10): 109458-. doi: 10.1016/j.cclet.2023.109458

    17. [17]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    18. [18]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    19. [19]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    20. [20]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

Metrics
  • PDF Downloads(7)
  • Abstract views(709)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return