Citation: Chen WANG, Qi-Hang LIU, Chen-Yang QI, Cong-Yu WANG, Xiao-Li ZHAO, Xiao-Wei YANG. Synthesis and Supercapacitor Performances of 0D/2D MXene Composite Membrane[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(9): 1707-1715. doi: 10.11862/CJIC.2022.178 shu

Synthesis and Supercapacitor Performances of 0D/2D MXene Composite Membrane

Figures(6)

  • The restacking of MXene nanosheets resulted in poor ion accessibility to absorption sites, preventing MXene from high energy density and power density. Herein, 0D/2D composite Ti3C 2Tx MXene was prepared by hydrothermal method to alleviate the restacking problem. The quantum dot-interspersed Ti3C2Tx nanosheets (QDT) structure was confirmed by X - ray diffraction, dynamic light scattering, and fluorescence spectroscopy. The free - standing film electrodes assembled by QDT showed prominently improved electrochemical properties compared to the pristine Ti3C2Tx nanosheets. In three-electrode system, the mass specific capacitance reached 338 F·g-1 under a scan rate of 5 mV·s-1. The capacitance retention reached 46% as the scan rate was 2 000 mV·s-1. In two-electrode system, the assembled symmetric supercapacitor delivered a discharge capacitance of 216 F·g-1 at a current density of 0.5 A·g-1. The capacitance retention rate was 87% after 10 000 cycles. The above electrochemical properties of QDT film electrodes were ascribed to the increased ion absorption sites from quantum dots and shortened ion path-way resulted from reduced nanosheet sizes.
  • 加载中
    1. [1]

      Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. 25th Anniversary Article: MXenes: A New Family of Two - Dimensional Materials[J]. Adv. Mater., 2014,26(7):992-1005. doi: 10.1002/adma.201304138

    2. [2]

      Xiong D B, Li X F, Bai Z M, Lu S G. Recent Advances in Layered Ti3C2Tx MXene for Electrochemical Energy Storage[J]. Small, 2018,14(17)1703419. doi: 10.1002/smll.201703419

    3. [3]

      Nasrin K, Sudharshan V, Subramani K, Sathish M. Insights into 2D/ 2D MXene Heterostructures for Improved Synergy in Structure toward Next - Generation Supercapacitors: A Review[J]. Adv. Funct. Mater., 2022,32(18)2110267. doi: 10.1002/adfm.202110267

    4. [4]

      Kumar K S, Choudhary N, Jung Y, Thomas J. Recent Advances in Two-Dimensional Nanomaterials for Supercapacitor Electrode Applications[J]. ACS Energy Lett., 2018,3(2):482-495. doi: 10.1021/acsenergylett.7b01169

    5. [5]

      Ma H Y, Chen H W, Wu M M, Chi F Y, Liu F, Bai J X, Cheng H H, Li C, Qu L T. Maximization of Spatial Charge Density: An Approach to Ultrahigh Energy Density of Capacitive Charge Storage[J]. Angew. Chem. Int. Ed., 2020,59(34):14541-14549. doi: 10.1002/anie.202005270

    6. [6]

      Brown M A, Goel A, Abbas Z. Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface[J]. Angew. Chem. Int. Ed., 2016,55(11):3790-3794. doi: 10.1002/anie.201512025

    7. [7]

      Augustyn V, Simon P, Dunn B. Pseudocapacitive Oxide Materials for High - Rate Electrochemical Energy Storage[J]. Energy Environ. Sci., 2014,7(5):1597-1614. doi: 10.1039/c3ee44164d

    8. [8]

      Lukatskaya M R, Bak S M, Yu X Q, Yang X Q, Barsoum M W, Gogotsi Y. Probing the Mechanism of High Capacitance in 2D Titanium Carbide Using In Situ X - ray Absorption Spectroscopy[J]. Adv. Energy Mater., 2015,5(15)1500589. doi: 10.1002/aenm.201500589

    9. [9]

      Hu M M, Li Z J, Hu T, Zhu S H, Zhang C, Wang X H. High-Capacitance Mechanism for Ti3C2Tx MXene by In Situ Electrochemical Raman Spectroscopy Investigation[J]. ACS Nano, 2016,10(12):11344-11350. doi: 10.1021/acsnano.6b06597

    10. [10]

      Toupin M, Brousse T, Belanger D. Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor[J]. Chem. Mater., 2004,16(16):3184-3190. doi: 10.1021/cm049649j

    11. [11]

      Augustyn V, Come J, Lowe M A, Kim J W, Taberna P L, Tolbert S H, Abruna H D, Simon P, Dunn B. High - Rate Electrochemical Energy Storage through Li+ Intercalation Pseudocapacitance[J]. Nat. Mater., 2013,12(6):518-522. doi: 10.1038/nmat3601

    12. [12]

      Lukatskaya M R, Dunn B, Gogotsi Y. Multidimensional Materials and Device Architectures for Future Hybrid Energy Storage[J]. Nat. Commun., 2016,712647. doi: 10.1038/ncomms12647

    13. [13]

      Choi D, Blomgren G E, Kumta P N. Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapaci-tors[J]. Adv. Mater., 2006,18(9):1178-1182. doi: 10.1002/adma.200502471

    14. [14]

      Lukatskaya M R, Kota S, Lin Z F, Zhao M Q, Shpigel N, Levi M D, Halim J, Taberna P L, Barsoum M W, Simon P, Gogotsi Y. Ultra - High - Rate Pseudocapacitive Energy Storage in Two - Dimensional Transition Metal Carbides[J]. Nat. Energy, 2017,2(8)17105. doi: 10.1038/nenergy.2017.105

    15. [15]

      Chen H W, Wen Y Y, Qi Y Y, Zhao Q, Qu L T, Li C. Pristine Titanium Carbide MXene Films with Environmentally Stable Conductivity and Superior Mechanical Strength[J]. Adv. Funct. Mater., 2019,30(5)1906996.

    16. [16]

      Shin H, Eom W, Lee K H, Jeong W, Kang D J, Han T H. Highly Electroconductive and Mechanically Strong Ti3C2Tx MXene Fibers Using a Deformable MXene Gel[J]. ACS Nano, 2021,15(2):3320-3329. doi: 10.1021/acsnano.0c10255

    17. [17]

      Lee G S, Yun T, Kim H, Kim I H, Choi J, Lee S H, Lee H J, Hwang H S, Kim J G, Kim D W, Lee H M, Koo C M, Kim S O. Mussel Inspired Highly Aligned Ti 3C2Tx MXene Film with Synergistic Enhancement of Mechanical Strength and Ambient Stability[J]. ACS Nano, 2020,14(9):11722-11732. doi: 10.1021/acsnano.0c04411

    18. [18]

      Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two - Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Adv. Mater., 2011,23(37):4248-4253. doi: 10.1002/adma.201102306

    19. [19]

      Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. Two-Dimensional Transition Metal Carbides[J]. ACS Nano, 2012,6(2):1322-1331. doi: 10.1021/nn204153h

    20. [20]

      Ng V M H, Huang H, Zhou K, Lee P S, Que W X, Xu J Z, Kong L B. Recent Progress in Layered Transition Metal Carbides and/or Nitrides (MXenes) and Their Composites: Synthesis and Applications[J]. J. Mater. Chem. A, 2017,5(7):3039-3068. doi: 10.1039/C6TA06772G

    21. [21]

      Garg R, Agarwal A, Agarwal M. A Review on MXene for Energy Storage Application: Effect of Interlayer Distance[J]. Mater. Res. Express, 2020,7(2)022001. doi: 10.1088/2053-1591/ab750d

    22. [22]

      Mu X P, Wang D S, Du F, Chen G, Wang C Z, Wei Y J, Gogotsi Y, Gao Y, Dall'Agnese Y. Revealing the Pseudo - Intercalation Charge Storage Mechanism of MXenes in Acidic Electrolyte[J]. Adv. Funct. Mater., 2019,29(29)1902953. doi: 10.1002/adfm.201902953

    23. [23]

      Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Conductive Two - Dimensional Titanium Carbide 'Clay' with High Volumetric Capacitance[J]. Nature, 2014,516(7529):78-81. doi: 10.1038/nature13970

    24. [24]

      Simon P, Gogotsi Y. Materials for Electrochemical Capacitors[J]. Nat. Mater., 2008,7(11):845-854. doi: 10.1038/nmat2297

    25. [25]

      Zhao M Q, Ren C E, Ling Z, Lukatskaya M R, Zhang C F, Van Aken K L, Barsoum M W, Gogotsi Y. Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance[J]. Adv. Mater., 2015,27(2):339-345. doi: 10.1002/adma.201404140

    26. [26]

      Kayali E, VahidMohammadi A, Orangi J, Beidaghi M. Controlling the Dimensions of 2D MXenes for Ultrahigh-Rate Pseudocapacitive Energy Storage[J]. ACS Appl. Mater. Interfaces, 2018,10(31):25949-25954. doi: 10.1021/acsami.8b07397

    27. [27]

      Chen J Z, Chen M F, Zhou W J, Xu X W, Liu B, Zhang W Q, Wong C P. Simplified Synthesis of Fluoride-Free Ti3C2Tx via Electrochemical Etching toward High - Performance Electrochemical Capacitors[J]. ACS Nano, 2022,16(2):2461-2470. doi: 10.1021/acsnano.1c09004

    28. [28]

      Li S, Shi Q, Li Y, Yang J, Chang T H, Jiang J W, Chen P Y. Interca-lation of Metal Ions into Ti3C2Tx MXene Electrodes for High-Areal-Capacitance Microsupercapacitors with Neutral Multivalent Electrolytes[J]. Adv. Funct. Mater., 2020,30(40)2003721. doi: 10.1002/adfm.202003721

    29. [29]

      Ren C E, Zhao M Q, Makaryan T, Halim J, Boota M, Kota S, Anasori B, Barsoum M W, Gogotsi Y. Porous Two - Dimensional Transition Metal Carbide (MXene) Flakes for High-Performance Li-Ion Storage[J]. ChemElectroChem, 2016,3(5):689-693. doi: 10.1002/celc.201600059

    30. [30]

      Li J, Yuan X T, Lin C, Yang Y Q, Xu L, Du X, Xie J L, Lin J H, Sun J L. Achieving High Pseudocapacitance of 2D Titanium Carbide (MXene) by Cation Intercalation and Surface Modification[J]. Adv. Energy Mater., 2017,7(15)1602725. doi: 10.1002/aenm.201602725

    31. [31]

      Tang J, Mathis T, Zhong X W, Xiao X, Wang H, Anayee M, Pan F, Xu B M, Gogotsi Y. Optimizing Ion Pathway in Titanium Carbide MXene for Practical High-Rate Supercapacitor[J]. Adv. Energy Mater., 2020,11(4)2003025.

    32. [32]

      Habib T, Zhao X F, Shah S A, Chen Y X, Sun W M, An H, Lutkenhaus J L, Radovic M, Green M J. Oxidation Stability of Ti3C2Tx MXene Nanosheets in Solvents and Composite Films[J]. npj 2D Mater. Appl., 2019,3(8):1-6.

    33. [33]

      Shao B B, Liu Z F, Zeng G M, Wang H, Liang Q H, He Q Y, Cheng M, Zhou C Y, Jiang L B, Song B. Two -Dimensional Transition Metal Carbide and Nitride (MXene) Derived Quantum Dots (QDs): Synthesis, Properties, Applications and Prospects[J]. J. Mater. Chem. A, 2020,8(16):7508-7535. doi: 10.1039/D0TA01552K

    34. [34]

      Xiao Z B, Li Z L, Li P Y, Meng X P, Wang R H. Ultrafine Ti3C2 MXene Nanodots - Interspersed Nanosheet for High - Energy - Density Lithium-Sulfur Batteries[J]. ACS Nano, 2019,13(3):3608-3617. doi: 10.1021/acsnano.9b00177

    35. [35]

      Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3 C2Tx MXene)[J]. Chem. Mater., 2017,29(18):7633-7644. doi: 10.1021/acs.chemmater.7b02847

    36. [36]

      Cai G N, Yu Z Z, Tong P, Tang D P. Ti3C 2 MXene Quantum Dot - Encapsulated Liposomes for Photothermal Immunoassays Using a Portable Near-Infrared Imaging Camera on a Smartphone[J]. Nanoscale, 2019,11(33):15659-15667. doi: 10.1039/C9NR05797H

    37. [37]

      Hu W J H, Xie L, Zeng H B. Novel Sodium Alginate - Assisted MXene Nanosheets for Ultrahigh Rejection of Multiple Cations and Dyes[J]. J. Colloid Interface Sci., 2020,568:36-45. doi: 10.1016/j.jcis.2020.02.028

    38. [38]

      Zong L, Li M J, Li C X. Bioinspired Coupling of Inorganic Layered Nanomaterials with Marine Polysaccharides for Efficient Aqueous Exfoliation and Smart Actuating Hybrids[J]. Adv. Mater., 2017,29(10)1604691. doi: 10.1002/adma.201604691

    39. [39]

      Xia F J, Lao J C, Yu R H, Sang X H, Luo J Y, Li Y, Wu J S. Ambient Oxidation of Ti3C2 MXene Initialized by Atomic Defects[J]. Nanoscale, 2019,11(48):23330-23337. doi: 10.1039/C9NR07236E

    40. [40]

      Yan J, Ren C E, Maleski K, Hatter C B, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance[J]. Adv. Funct. Mater., 2017,27(30)1701264. doi: 10.1002/adfm.201701264

    41. [41]

      Wei J J, Wang G, Zhang Y J, Wang S P, Zhao W Y, Liu Q H, Liu C C, Zhao X L, Yang X W. Proton - Induced Fast Preparation of Size - Controllable MoS2 Nanocatalyst towards Highly Efficient Water Electrolysis[J]. Chin. Chem. Lett., 2021,32(3):1191-1196. doi: 10.1016/j.cclet.2020.08.005

    42. [42]

      Zhang L X, Su W T, Shu H B, Lü T, Fu L, Song K X, Huang X W, Yu J H, Lin C T, Tang Y P. Tuning the Photoluminescence of Large Ti3C2Tx MXene Flakes[J]. Ceram. Int., 2019,45(9):11468-11474. doi: 10.1016/j.ceramint.2019.03.014

    43. [43]

      Zhang Q X, Sun Y, Liu M L, Liu Y. Selective Detection of Fe3+ Ions Based on Fluorescence MXene Quantum Dots via a Mechanism Integrating Electron Transfer and Inner Filter Effect[J]. Nanoscale, 2020,12(3):1826-1832. doi: 10.1039/C9NR08794J

    44. [44]

      Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles[J]. J. Phys. Chem. C, 2007,111(40):14925-14931. doi: 10.1021/jp074464w

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    4. [4]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    5. [5]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    13. [13]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    14. [14]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    15. [15]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    16. [16]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    17. [17]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    18. [18]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    19. [19]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    20. [20]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(13)
  • Abstract views(1821)
  • HTML views(512)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return