Citation: Ti-Tong NI, Yue MENG, KOSO Aoki, Yi-Yang YAO, Hao-Dong TANG, Ai-Min CHEN, Sheng-Jie XIA. Photocatalytic Degradation of Methylene Blue by Fe3O4@MAl-Layered Double Hydroxides (M=Zn, Co, Ni) Composite: Performance, Kinetics, and Mechanism[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(9): 1759-1770. doi: 10.11862/CJIC.2022.171 shu

Photocatalytic Degradation of Methylene Blue by Fe3O4@MAl-Layered Double Hydroxides (M=Zn, Co, Ni) Composite: Performance, Kinetics, and Mechanism

Figures(7)

  • Based on low-cost, non-toxic, and strong light absorption ferric oxide (Fe3O4) and layered double hydrox-ides (LDHs) with large specific surface and high stability, Fe3O4@MAl -LDHs (M=Zn, Co, Ni) composites were pre-pared and used for photocatalytic degradation of methylene blue. The composition and structure of the composites were characterized by X-ray powder diffraction (XRD), UV-Vis absorption spectroscopy, scanning electron microsco-py (SEM), transmission electron microscopy (TEM), and N2 adsorption-desorption test. The optimum conditions were as follows: the amount of catalyst was 50 mg, the light intensity was 500 W, the pH value was 9, and the reaction temperature was 40 ℃. The degradation rate of methylene blue increased significantly from 23.2% of LDHs to 87.0% of Fe 3O4@MAl- LDHs. The degradation of methylene blue by LDHs mainly comes from ·OH, while the photo-degradation activity of Fe3O4@MAl-LDHs is mainly contributed by both ·OH and holes. In addition, there were also great differences in the electrochemical properties of LDHs and Fe3O4@MAl-LDHs.
  • 加载中
    1. [1]

      Feng M B, Dionysiou D D, Sharma V K. Black Phosphorous-Based Nanostructures in Environmental Remediation: Current Status and Future Perspectives[J]. Chem. Eng. J., 2020,389123460. doi: 10.1016/j.cej.2019.123460

    2. [2]

      Nguyen V Q, Baynosa M L, Nguyen V H, Tuma D, Lee Y R, Shim J J. Solvent-Driven Morphology -Controlled Synthesis of Highly Efficient Long-Life ZnO/Graphene Nanocomposite Photocatalysts for the Practical Degradation of Organic Wastewater under Solar Light[J]. Appl. Surf. Sci., 2019,486:37-51. doi: 10.1016/j.apsusc.2019.03.262

    3. [3]

      Yu S J, Wang X X, Pang H W, Zhang R, Song W C, Fu D, Hayat T, Wang X K. Boron Nitride-Based Materials for the Removal of Pollutants from Aqueous Solutions: A Review[J]. Chem. Eng. J., 2018,333:343-360. doi: 10.1016/j.cej.2017.09.163

    4. [4]

      ZHANG L J, WU J J, MENG Y, XIA S J. Direct Z-Scheme Heterojunction CeO2@NiAl-LDHs for Photodegradation of Rhodamine B and Photocatalytic Hydrogen Evolution: Performance and Mechanism[J]. Chinese J. Inorg. Chem., 2021,37(2):316-326.  

    5. [5]

      Bagheri N, Lakouraj M M, Hasantabar V, Mohseni M. Biodegradable Macro-porous CMC-Polyaniline Hydrogel: Synthesis, Characterization and Study of Microbial Elimination and Sorption Capacity of Dyes from Waste Water[J]. J. Hazard. Mater., 2021,403123631. doi: 10.1016/j.jhazmat.2020.123631

    6. [6]

      Shi W L, Ren H J, Huang X L, Li M Y, Tang Y B, Guo F. Low Cost Red Mud Modified Graphitic Carbon Nitride for the Removal of Organic Pollutants in Wastewater by the Synergistic Effect of Adsorption and Photocatalysis[J]. Sep. Purif. Technol., 2020,237116477. doi: 10.1016/j.seppur.2019.116477

    7. [7]

      Li Q, Zhao T T, Li M, Li W T, Yang B, Qin D R, Lv K L, Wang X, Wu L M, Wu X F, Sun J. One-Step Construction of Pickering Emulsion via Commercial TiO2 Nanoparticles for Photocatalytic Dye Degradation[J]. Appl. Catal. B-Environ., 2019,249:1-8. doi: 10.1016/j.apcatb.2019.02.057

    8. [8]

      Li Y X, Hou Y L, Fu Q Y, Peng S Q, Hu Y H. Oriented Growth of ZnIn2S 4/In(OH)3 Heterojunction by a Facile Hydrothermal Transformation for Efficient Photocatalytic H2 Production[J]. Appl. Catal. B - Environ., 2017,206:726-733. doi: 10.1016/j.apcatb.2017.01.062

    9. [9]

      Li Y X, Han P, Hou Y L, Peng S Q, Kuang X J. Oriented Znm In2Sm+3@In2S3 Heterojunction with Hierarchical Structure for Efficient Photocatalytic Hydrogen Evolution[J]. Appl. Catal. B-Environ., 2019,244:604-611. doi: 10.1016/j.apcatb.2018.11.088

    10. [10]

      Zhang L Y, Meng Y, Dai T T, Yao Y Y, Shen H, Xie B, Ni Z M, Xia S J. Fabrication of a Coated BiVO4@LDHs Z-Scheme Heterojunction and Photocatalytic Degradation of Norfloxacin[J]. Appl. Clay Sci., 2022,219106435. doi: 10.1016/j.clay.2022.106435

    11. [11]

      Zhang W J, Meng Y, Liu Y H, Shen H, Ni Z M, Xia S J, Han W F, Li Y, Tang H D. Boosted Photocatalytic Degradation of Norfloxacin on LaOCl/LDH: Synergistic Effect of Z-Scheme Heterojunction and O Vacancies[J]. J. Environ. Chem. Eng., 2022,10107812. doi: 10.1016/j.jece.2022.107812

    12. [12]

      Zhao Y F, Zhao Y X, Waterhouse G I N, Zheng L R, Cao X Z, Teng F, Wu L Z, Tung C H, O'Hare D, Zhang T R. Layered-Double-Hydroxide Nanosheets as Efficient Visible-Light-Driven Photocatalysts for Dinitrogen Fixation[J]. Adv. Mater., 2017,29(42)1703828. doi: 10.1002/adma.201703828

    13. [13]

      Mohapatra L, Parida K J. A Review on the Recent Progress, Chal-lenges and Perspective of Layered Double Hydroxides as Promising Photocatalysts[J]. J. Mater. Chem. A, 2016,4(28):10744-10766. doi: 10.1039/C6TA01668E

    14. [14]

      Jin X J, Koizumi Y, Mizuno K N. Selective Synthesis of Primary Anilines from Cyclohexanone Oximes by the Concerted Catalysis of a Mg-Al Layered Double Hydroxide Supported Pd Catalyst[J]. J. Am. Chem. Soc., 2017,139(39):13821-13829. doi: 10.1021/jacs.7b07347

    15. [15]

      Liang X Y, Yang X Z, Gao G J, Li C F, Li Y Y, Zhang W D, Chen X T, Zhang Y B, Zhang B B, Lei Y Q, Shi Q Q. Performance and Mech-anism of CuO/CuZnAl Hydrotalcites -ZnO for Photocatalytic Selective Oxidation of Gaseous Methanol to Methyl Formate at Ambient Temperature[J]. J. Catal., 2016,339:68-76. doi: 10.1016/j.jcat.2016.03.033

    16. [16]

      Xu S M, Yan H, Wei M. Band Structure Engineering of Transition-Metal-Based Layered Double Hydroxides toward Photocatalytic Oxygen Evolution from Water: A Theoretical-Experimental Combination Study[J]. J. Phys. Chem. C, 2017,121(5):2683-2695. doi: 10.1021/acs.jpcc.6b10159

    17. [17]

      Zhu J Y, Zhu Z L, Zhang H, Lu H T, Qiu Y L, Zhu L Y, Küppersc S. Enhanced Photocatalytic Activity of Ce -Doped Zn -Al Multi -metal Oxide Composites Derived from Layered Double Hydroxide Precursors[J]. J. Colloid Interface Sci., 2016,481:144-157. doi: 10.1016/j.jcis.2016.07.051

    18. [18]

      Liu X, Zhao X F, Zhu Y, Zhang F Z. Experimental and Theoretical Investigation into the Elimination of Organic Pollutants from Solu-tion by Layered Double Hydroxides[J]. Appl. Catal. B -Environ., 2013,140:241-248.

    19. [19]

      Iqbal K, Iqbal A, Kirillov A M, Wang B K, Liu W S, Tang Y. A New Ce-Doped MgAl -LDH@Au Nanocatalyst for Highly Efficient Reductive Degradation of Organic Contaminants[J]. J. Mater. Chem. A, 2017,5(14):6716-6724. doi: 10.1039/C6TA10880F

    20. [20]

      Meng Y, Chen Y F, Zhou X B, Pan G X, Xia S J. Experimental and Theoretical Investigations into the Activity and Mechanism of the Water-Gas Shift Reaction Catalyzed by Au Nanoparticles Supported on Zn-Al/Cr/Fe Layered Double Hydroxides[J]. Int. J. Hydrog. Energy, 2020,45(1):464-476. doi: 10.1016/j.ijhydene.2019.10.172

    21. [21]

      Jing H Y, Wen T, Fan C M, Gao G Q, Zhong S L, Xu A W. Efficient Adsorption/Photodegradation of Organic Pollutants from Aqueous Systems Using Cu2O Nanocrystals as a Novel Integrated Photocatalytic Adsorbent[J]. J. Mater. Chem. A, 2014,2(35):14563-14570. doi: 10.1039/C4TA02459A

    22. [22]

      Casillas J E, Tzompantzi F, Castellanos S G, Mendoza-Damián G, Pérez-Hernández R, López-Gaonab A, Barreraa A. Promotion Effect of ZnO on the Photocatalytic Activity of Coupled Al2 O3 -Nd2O 3 -ZnO Composites Prepared by the Sol-Gel Method in the Degradation of Phenol[J]. Appl. Catal. B-Environ., 2017,208:161-170. doi: 10.1016/j.apcatb.2017.02.030

    23. [23]

      Zhang G H, Meng Y, Xie B, Ni Z M, Lu H F, Xia S J. Precise Location and Regulation of Active Sites for Highly Efficient Photocatalytic Synthesis of Ammonia by Facet-Dependent BiVO4 Single Crystals[J]. Appl. Catal. B-Environ., 2021,296120379. doi: 10.1016/j.apcatb.2021.120379

    24. [24]

      Yuan X X, Yang J Y, Yao Y Y, Shen H, Meng Y, Xie B, Ni Z M, Xia S J. Preparation, Characterization, and Mechanism of 0D/2D Cu2O/BiOCl Z-Scheme Heterojunction for Efficient Photocatalytic Degradation of Tetracycline[J]. Sep. Purif. Technol., 2022,291120965. doi: 10.1016/j.seppur.2022.120965

    25. [25]

      Zhang X W, Wang F, Wang C C, Wang P, Fu H F, Chen Z. Photocatalysis Activation of Peroxodisulfate over the Supported Fe3O4 Catalyst Derived from MIL-88A (Fe) for Efficient Tetracycline Hydrochloride Degradation[J]. Chem. Eng. J., 2021,426131927. doi: 10.1016/j.cej.2021.131927

    26. [26]

      Zhang W J, Meng Y, Liu Y H, Shen H, Ni Z M, Xia S J, Han W F, Li Y, Tang H D. Boosted Photocatalytic Degradation of Norfloxacin on LaOCl/LDH: Synergistic Effect of Z-Scheme Heterojunction and O Vacancies[J]. J. Environ. Chem. Eng., 2022,10107812. doi: 10.1016/j.jece.2022.107812

    27. [27]

      Kumar A, Rana A, Sharma G, Naushad M, Al-Muhtaseb A L, Guo C S, Iglesias-Juez A, Stadler F J. High-Performance Photocatalytic Hydrogen Production and Degradation of Levofloxacin by Wide Spectrum-Responsive Ag/Fe 3O 4 Bridged SrTiO3/g-C3 N4 Plasmonic Nanojunctions: Joint Effect of Ag and Fe3O4[J]. ACS Appl. Mater. Interfaces, 2018,10(47):40474-40490. doi: 10.1021/acsami.8b12753

    28. [28]

      Yang C, Zhang G H, Meng Y, Pan G X, Ni Z M, Xia S J. Direct Z-Scheme CeO2@LDH Core-Shell Heterostructure for Photodegradation of Rhodamine B by Synergistic Persulfate Activation[J]. J. Hazard. Mater., 2021,408124908. doi: 10.1016/j.jhazmat.2020.124908

    29. [29]

      Zhang G H, Dai T T, Meng Y, Xie B, Ni Z M, Xia S J. Modulation of Photo-Generated Solvated Electrons for Ammonia Synthesis via Facet-Dependent Engineering of Heterojunctions[J]. Appl. Catal. B - Environ., 2021,288119990. doi: 10.1016/j.apcatb.2021.119990

    30. [30]

      Yu J G, Liu S W, Yu H G. Microstructures and Photoactivity of Mesoporous Anatase Hollow Microspheres Fabricated by Fluoride-Mediated Self-Transformation[J]. J. Catal., 2007,249(1):59-66. doi: 10.1016/j.jcat.2007.03.032

    31. [31]

      Al-Wadaani F, Kozhevnikova E F, Kozhevnikov I V. Pd Supported on ZnⅡ-CrⅢ Mixed Oxide as a Catalyst for One-Step Synthesis of Methyl Isobutyl Ketone[J]. J. Catal., 2008,257(1):199-205. doi: 10.1016/j.jcat.2008.04.025

    32. [32]

      Zhang G H, Zhang X Q, Meng Y, Pan G X, Ni Z M, Xia S J. Layered Double Hydroxides-Based Photocatalysts in Visible-Light Photodegradation of Organic Pollutants: A Review[J]. Chem. Eng. J., 2020,392123684. doi: 10.1016/j.cej.2019.123684

    33. [33]

      Zhang L Y, Meng Y, Shen H, Li J H, Yang C F, Xie B, Xia S J. High Efficiency Photocatalytic Ammonia Synthesis by Facet Orientation Supported Heterojunction Cu2O@BiOCl[J]. Inorg. Chem., 2022,61(16):6045-6055. doi: 10.1021/acs.inorgchem.2c00058

    34. [34]

      Wang G, Wang Q, Lu W, Li J H. Photoelectrochemical Study on Charge Transfer Properties of TiO2-B Nanowires with an Application as Humidity Sensors[J]. J. Phys. Chem. B, 2006,110(43):22029-22034. doi: 10.1021/jp064630k

    35. [35]

      Tu X M, Luo S L, Chen G X, Li J H. One-Pot Synthesis, Characterization, and Enhanced Photocatalytic Activity of a BiOBr-Graphene Composite[J]. Chem. Eur. J., 2012,18(45):14359-14366. doi: 10.1002/chem.201200892

    36. [36]

      Zhang G H, Yuan X X, Xie B, Meng Y, Ni Z M, Xia S J. S Vacancies Act as A Bridge to Promote Electron Injection from Z-Scheme Heterojunction to Nitrogen Molecule for Photocatalytic Ammonia Synthesis[J]. Chem. Eng. J., 2022,433133670. doi: 10.1016/j.cej.2021.133670

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    4. [4]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    8. [8]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    11. [11]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    12. [12]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    13. [13]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    14. [14]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    15. [15]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    16. [16]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    17. [17]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    18. [18]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    19. [19]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(13)
  • Abstract views(1830)
  • HTML views(400)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return