Citation: Man‐Rong LIU, Ji‐Jiang WANG, Er‐Lin YUE, Long TANG, Xiao WANG, Xiang‐Yang HOU, Yu‐Qi ZHANG. Synthesis, Structure, Magnetic, and Fluorescent Sensing Properties of Cobalt(Ⅱ) Coordination Polymer Based on 1⁃(3, 5⁃Dicarboxybenzyl)⁃1H⁃pyrazole⁃3, 5⁃dicarboxylic Acid[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1601-1608. doi: 10.11862/CJIC.2022.152 shu

Synthesis, Structure, Magnetic, and Fluorescent Sensing Properties of Cobalt(Ⅱ) Coordination Polymer Based on 1⁃(3, 5⁃Dicarboxybenzyl)⁃1H⁃pyrazole⁃3, 5⁃dicarboxylic Acid

Figures(10)

  • A new coordination polymer (CP), [Co5(L)2(μ3‐OH)2(H2O)8]n (1) (H4L=1‐(3, 5‐dicarboxybenzyl)‐1H‐pyrazole‐3, 5‐dicarboxylic acid), was synthesized by hydrothermal method and characterized by single‐crystal X‐ray diffraction, elemental analyses, infrared spectroscopic analysis, and thermogravimetric analysis. The crystallographic analysis indicates that complex 1 crystallizes in the triclinic system with a space group of P1 and exhibits a 3D network structure. Each of the three Co(Ⅱ) ions in the molecule adopts a six‐coordinated pattern, forming a slightly twisted octahedral coordination configuration. The variable temperature magnetic susceptibility measurements indicate that there are antiferromagnetic interactions between the Co(Ⅱ) ions in complex 1. The fluorescence sensing experiments demonstrate that complex 1 exhibits fluorescent quenching to Hg2+ with high sensitivity and selectivity. Additionally, the Co(Ⅱ)‐CP sensor could be successfully used to assay the content of Hg2+ in Yanhe River water samples.
  • 加载中
    1. [1]

      Wang C, Liu D M, Lin W B. Metal‐Organic Frameworks as a Tunable Platform for Designing Functional Molecular Materials[J]. J. Am. Chem. Soc., 2013,135(36):13222-13234. doi: 10.1021/ja308229p

    2. [2]

      Furukawa H, Cordova K E, O′Keeffe M, Yaghi O M. The Chemistry and Applications of Metal‐Organic Frameworks[J]. Science, 2013,341(6149)1230444. doi: 10.1126/science.1230444

    3. [3]

      Thorarinsdottir A E, Harris T D. Metal‐Organic Framework Magnets[J]. Chem. Rev., 2020,120(16):8716-8789. doi: 10.1021/acs.chemrev.9b00666

    4. [4]

      Bagheri M, Masoomi M Y. Sensitive Ratiometric Fluorescent Metal‐Organic Framework Sensor for Calcium Signaling in Human Blood Ionic Concentration Media[J]. ACS Appl. Mater. Interfaces, 2020,12(4):4625-4631. doi: 10.1021/acsami.9b20489

    5. [5]

      Shi Y S, Yu Q, Zhang J W, Cui G H. Four Dual‐Functional Luminescent Zn(Ⅱ)‐MOFs Based on 1, 2, 4, 5‐Benzenetetracarboxylic Acid with Pyridylbenzimidazole Ligands for Detection of Iron(Ⅲ) Ions and Acetylacetone[J]. CrystEngComm, 2021,23(7):1604-1615. doi: 10.1039/D0CE01619E

    6. [6]

      Yang L T, Cai P Y, Zhang L L, Xu X Y, Yakovenko A A, Wang Q, Pang J D, Yuan S, Zou X D, Huang N, Huang Z H, Zhou H C. Ligand‐Directed Conformational Control over Porphyrinic Zirconium Metal‐Organic Frameworks for Size‐Selective Catalysis[J]. J. Am. Chem. Soc., 2021,143(31):12129-12137. doi: 10.1021/jacs.1c03960

    7. [7]

      Razavi S A A, Morsali A. Metal Ion Detection Using Luminescent‐MOFs: Principles, Strategies and Roadmap[J]. Coord. Chem. Rev., 2020,415213299. doi: 10.1016/j.ccr.2020.213299

    8. [8]

      Lin R B, Xiang S C, Xing H B, Zhou W, Chen B L. Exploration of Porous Metal‐Organic Frameworks for Gas Separation and Purification[J]. Coord. Chem. Rev., 2019,378:87-103. doi: 10.1016/j.ccr.2017.09.027

    9. [9]

      Xue D X, Wang Q, Bai J F. Amide‐Functionalized Metal‐Organic Frameworks: Syntheses, Structures and Improved Gas Storage and Separation Properties[J]. Coord. Chem. Rev., 2019,378:2-16. doi: 10.1016/j.ccr.2017.10.026

    10. [10]

      Xue D X, Belmabkhout Y, Shekhah O, Jiang H, Adil K, Cairns A J, Eddaoudi M. Tunable Rare Earth fcu ‐ MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction[J]. J. Am. Chem. Soc., 2015,137(15):5034-5040. doi: 10.1021/ja5131403

    11. [11]

      Kang Y S, Lu Y, Chen K, Zhao Y, Wang P, Sun W Y. Metal‐Organic Frameworks with Catalytic Centers: From Synthesis to Catalytic Application[J]. Coord. Chem. Rev., 2019,378:262-280. doi: 10.1016/j.ccr.2018.02.009

    12. [12]

      Lu L Y, Tao X W, Chen F Y, Cheng A L, Xue Q S, Gao E Q. A Series of New Sulfone‐Functionalized Coordination Polymers: Fascinating Architectures and Efficient Fluorescent Sensing of Nitrofuran Antibiotics[J]. J. Solid State Chem., 2021,301122251. doi: 10.1016/j.jssc.2021.122251

    13. [13]

      Gao J K, Huang Q, Wu Y H, Lan Y Q, Chen B L. Metal‐Organic Frameworks for Photo/Electrocatalysis[J]. Adv. Energy Sustainability Res., 2021,2(8)2100033. doi: 10.1002/aesr.202100033

    14. [14]

      Wu Y H, Li Y W, Gao J K, Zhang Q C. Recent Advances in Vacancy Engineering of Metal‐Organic Frameworks and Their Derivatives for Electrocatalysis[J]. SusMat, 2021,1(1):66-87. doi: 10.1002/sus2.3

    15. [15]

      Wang L Y, Xu H, Gao J K, Yao J M, Zhang Q C. Recent Progress in Metal‐Organic Frameworks ‐ Based Hydrogels and Aerogels and Their Applications[J]. Coord. Chem. Rev., 2019,398213016. doi: 10.1016/j.ccr.2019.213016

    16. [16]

      Lim D W, Kitagawa H. Proton Transport in Metal ‐ Organic Frameworks[J]. Chem. Rev., 2020,120(16):8416-8467. doi: 10.1021/acs.chemrev.9b00842

    17. [17]

      Stock N, Biswas S. Synthesis of Metal‐Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites[J]. Chem. Rev., 2011,112(2):933-969.

    18. [18]

      Qiu S L, Xue M, Zhu G S. Metal ‐ Organic Framework Membranes: From Synthesis to Separation Application[J]. Chem. Soc. Rev., 2014,43(16):6116-6140. doi: 10.1039/C4CS00159A

    19. [19]

      Feng F, Song N N, Hu W B. pH ‐ Dependent Supramolecular Self‐Assemblies of Copper(Ⅱ) (Fluorene‐9, 9‐diyl)dipropanoic Acid Complexes[J]. CrystEngComm, 2015,17(43):8216-8220. doi: 10.1039/C5CE01487E

    20. [20]

      Long L S. pH Effect on the Assembly of Metal ‐ Organic Architectures[J]. CrystEngComm, 2010,12(5):1354-1365. doi: 10.1039/b921146b

    21. [21]

      Zhang L, Lu S T, Zhang C, Du C X, Hou H W. Highly pH‐Dependent Synthesis of Two Novel Three ‐ Dimensional Dysprosium Complexes with Interesting Magnetic and Luminescence Properties[J]. CrystEngComm, 2015,17(4):846-855. doi: 10.1039/C4CE02023E

    22. [22]

      Lu W, Wei Z, Gu Z Y, Liu T F, Park J, Tian J, Zhang M W, Zhang Q, Gentle Ⅲ T, Bosch M, Zhou H C. Tuning the Structure and Function of Metal‐Organic Frameworks via Linker Design[J]. Chem. Soc. Rev., 2014,43(16):5561-5593. doi: 10.1039/C4CS00003J

    23. [23]

      He T, Kong X J, Li J R. Chemically Stable Metal ‐ Organic Frameworks: Rational Construction and Application Expansion[J]. Acc. Chem. Res., 2021,54(15):3083-3094. doi: 10.1021/acs.accounts.1c00280

    24. [24]

      Sun J, Shang K X, Wu Y J, Zhang Q, Yao X Q, Yang Y X, Hu D C, Liu J C. Three New Coordination Polymers Based on a 1‐(3, 5‐Dicar‐boxy‐benzyl)‐1H‐Pyrazole‐3, 5 ‐dicarboxylic Acid Ligand: Synthesis, Crystal Structures, Magnetic Properties and Selectively Sensing Properties[J]. Polyhedron, 2018,141:223-229. doi: 10.1016/j.poly.2017.11.037

    25. [25]

      Zhu X, Sun P P, Ding J G, Li B L, Li H Y. Tuning Cobalt Coordination Architectures by Bis(1, 2, 4‐triazol‐1‐ylmethyl)benzene Position Isomers and 5‐Nitroisophthalate[J]. Cryst. Growth Des., 2012,12(8):3992-3997. doi: 10.1021/cg300465r

    26. [26]

      WANG J J, HOU X Y, GAO L J, ZHANG M L, REN Y X, FU F. Synthesis, Crystal Structure, and Luminescence of 3, 3′, 5, 5′‐Benzene‐ 1, 3‐biyl‐tetrabenzoic Acid Ligand Based Zinc Coordination Polymer with 4‐Fold Interpenetrated dmd Topology[J]. Chinese J. Inorg. Chem., 2014,30(7):1616-1620.  

    27. [27]

      ZHANG M L, WANG J J, REN Y X. Synthesis, Crystal Structure, and Luminescence of Two Coordination Polymers Based 3, 3′, 5, 5′‐Benzene‐biyl‐tetrabenzoic Acid(The original text is 3, 3′, 5, 5′‐Benzene‐biy‐ltetrabenzoic Acid)[J]. Chinese J. Inorg. Chem., 2014,30(11):2477-2483.  

    28. [28]

      WANG J J, HOU X Y, GAO L J, ZHANG M L, REN Y X, FU F. Hydrothermal Synthesis, Crystal Structure and Luminescence of a 2D Bilayer Zn(Ⅱ) Coordination Polymer Based on Terphenyl‐2, 2′, 4, 4′‐tetracarboxylic Acid[J]. Chinese J. Inorg. Chem., 2014,30(2):379-383.  

    29. [29]

      Chen X L, Cui H L, Wang J J, Yang H, Wang X, Liu L, Ren Y X. Rational Design, Crystal Structures and Sensing Properties of a Series of Luminescent MOFs Based on a Flexible Tetracarboxylate Ligand and N‐donor Ligands[J]. CrystEngComm, 2019,21(48):7389-7406.

    30. [30]

      TANG L, FU Y H, WANG Y T, WANG H H, WANG J J, HOU X Y, WANG X. Three Complexes Constructed Using 2, 2′‐Oxybis(benzoic acid) and N‐Donor Ligands: Syntheses, Structures and Fluorescent Properties[J]. Chinese J. Inorg. Chem., 2020,36(8):1550-1556.  

    31. [31]

      Wang J J, Wang L B, Cao Z, Yue E L, Tang L, Wang X, Hou X Y, Zhang Y Q. Four Coordination Polymers Based on 5‐(3, 5‐Dicarboxy‐benzyloxy)isophthalic Acid: Synthesis, Structures, Photocatalytic Properties, Fluorescence Sensing and Magnetic Properties[J]. J. Solid State Chem., 2021,302122379.

    32. [32]

      WANG L B, WANG J J, YUE E L, TANG L, WANG X, HOU X Y, ZHANG Y Q. Synthesis, Structure, Magnetic and Photocatalytic Properties of Nickel(Ⅱ) Coordination Polymer Based on 1‐(3, 5‐Dicar‐boxybenzyl)‐1H‐pyrazole‐3, 5‐dicarboxylic Acid Ligand[J]. Chinese J. Inorg. Chem., 2021,37(4):744-750.  

    33. [33]

      Cepeda J, Rodríguez‐Diéguez A. Tuning the Luminescence Performance of Metal‐Organic Frameworks Based on d10 Metal Ions: From an Inherent Versatile Behaviour to Their Response to External Stim‐ uli[J]. CrystEngComm, 2016,18(44):8556-8573.

    34. [34]

      Zhang L, Liu L, Huang C, Han X, Guo L A, Xu H, Hou H W, Fan Y T. Polynuclear Ni(Ⅱ)/Co(Ⅱ)/Mn(Ⅱ) Complexes Based on Terphenyl‐Tetracarboxylic Acid Ligand: Crystal Structures and Research of Magnetic Properties[J]. Cryst. Growth Des., 2015,15(7):3426-3434.

    35. [35]

      Fan C B, Zhu B, Zhang X, Bi C F, Zhang D M, Zong Z, Fan Y H. Highly Stable Acid‐Induced Emission‐Enhancing Cd‐MOFs: Synthesis, Characterization, and Detection of Glutamic Acid in Water and Fe Ions in Acid[J]. Inorg. Chem., 2021,60(9):6339-6348.

  • 加载中
    1. [1]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    2. [2]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    3. [3]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    4. [4]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    5. [5]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    6. [6]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    7. [7]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    8. [8]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    9. [9]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    10. [10]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    11. [11]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    12. [12]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    13. [13]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    14. [14]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    15. [15]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    20. [20]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

Metrics
  • PDF Downloads(6)
  • Abstract views(669)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return