Citation: Da-Ze NING, Hong-Guang SUN. Performance of the Inward Radial Hollow TiN Particles as Cathodes for Lithium-Sulfur Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1375-1381. doi: 10.11862/CJIC.2022.143 shu

Performance of the Inward Radial Hollow TiN Particles as Cathodes for Lithium-Sulfur Batteries

  • Corresponding author: Hong-Guang SUN, hgsun816@qust.edu.cn
  • Received Date: 18 March 2022
    Revised Date: 17 May 2022

Figures(5)

  • The inward radially hollow structure TiN particles (IRHTiNs) was designed and synthesized by using the hard-template method and combined with sulfur (S) to prepare lithium-sulfur batteries (LSB) cathodes. Subsequently, the structure and composition of IRHTiNs and IRHTiNs/S composite cathodes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). In the electrochemical test process, compared with the C cathodes, LSB using the IRHTiNs cathodes exhibited a high original specific capacity of 1 256 mAh·g-1, the capacity fading rate was significantly reduced, and the LSB performance was significantly improved.
  • 加载中
    1. [1]

      Shi H D, Ren X M, Lu J M, Dong C, Liu J, Yang Q H, Chen J, Wu Z S. Dual-Functional Atomic Zinc Decorated Hollow Carbon Nanoreactors for Kinetically Accelerated Polysulfides Conversion and Dendrite Free Lithium Sulfur Batteries[J]. Energy Storage Mater., 2020,10(39)2002271.

    2. [2]

      Wang W P, Zhang J, Chou J, Yin Y X, You Y, Xin S, Guo Y G. Solidifying Cathode-Electrolyte Interface for Lithium-Sulfur Batteries[J]. Energy Storage Mater., 2021,11(2)2000791.

    3. [3]

      Ding B, Wang J, Fan Z J, Chen S, Lin Q Y, Lu X J, Dou H, Nanjundan A K, Yushin G, Zhang X G, Yamauchi Y. Solid-State Lithium-Sulfur Batteries: Advances, Challenges and Perspectives[J]. Mater. Today, 2020,40:114-131. doi: 10.1016/j.mattod.2020.05.020

    4. [4]

      Lim J, Pyun J, Char K. Recent Approaches for the Direct Use of Elemental Sulfur in the Synthesis and Processing of Advanced Materials[J]. Angew. Chem. Int. Ed., 2015,54(11):3249-3258. doi: 10.1002/anie.201409468

    5. [5]

      Son Y, Lee J S, Son Y, Jang J H, Cho J. Recent Advances in Lithium Sulfide Cathode Materials and Their Use in Lithium Sulfur Batteries[J]. Adv. Energy Mater., 2015,5(16)1500110. doi: 10.1002/aenm.201500110

    6. [6]

      Zhou L, Danilov D L, Eichel R A, Notten P H L. Host Materials Anchoring Polysulfides in Li-S Batteries Reviewed[J]. Adv. Energy Mater., 2020,11(15)2001304.

    7. [7]

      Zheng M B, Chi Y, Hu Q, Tang H, Jiang X L, Zhang L, Zhang S T, Pang H, Xu Q. Carbon Nanotube-Based Materials for Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2019,7(29):17204-17241. doi: 10.1039/C9TA05347F

    8. [8]

      Zeng W D, Cheng M M C, Ng K Y S. Cathode Framework of Nanostructured Titanium Nitride/Graphene for Advanced Lithium-Sulfur Batteries[J]. ChemElectroChem, 2019,6(10):2796-2804. doi: 10.1002/celc.201900364

    9. [9]

      Li H T, Li Y G, Zhang L. Designing Principles of Advanced Sulfur Cathodes toward Practical Lithium-Sulfur Batteries[J]. SusMat, 2022,2(1):34-64. doi: 10.1002/sus2.42

    10. [10]

      Cui Z Q, Yao J, Mei T, Zhou S Y, Hou B F, Li J, Li J H, Wang J Y, Qian J W, Wang X B. Strong Lithium Polysulfides Chemical Trapping of TiC-TiO2/S Composite for Long-Cycle Lithium-Sulfur Batteries[J]. Electrochim. Acta, 2019,298(1):43-51.

    11. [11]

      Yang J H, Yang X F, Cheong J L, Zaghib K, Trudeau M L, Ying J Y. Nanoboxes with a Porous MnO Core and Amorphous TiO2 Shell as a Mediator for Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2021,9(8):4952-4961. doi: 10.1039/D0TA09700D

    12. [12]

      Gao B, Li X X, Ding K, Huang C, Li Q W, Chu P K, Huo K. Recent Progress in Nanostructured Transition Metal Nitrides for Advanced Electrochemical Energy Storage[J]. J. Mater. Chem. A, 2019,7(1):14-37. doi: 10.1039/C8TA05760E

    13. [13]

      Lim W G, Jo C S, Cho A, Hwang J, Kim S, Han J W, Lee J. Approaching Ultrastable High-Rate Li-S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation[J]. Adv. Mater., 2019,31(3)1806547. doi: 10.1002/adma.201806547

    14. [14]

      Wang Y K, Zhang R F, Pang Y C, Chen X, Lang J X, Xu J J, Xiao C H, Li H L, Xi K, Ding S J. Carbon@Titanium Nitride Dual Shell Nanospheres as Multi-functional Hosts for Lithium Sulfur Batteries[J]. Energy Storage Mater., 2019,16:228-235. doi: 10.1016/j.ensm.2018.05.019

    15. [15]

      Li H X, Ma S, Li J W, Liu F Y, Zhou H H, Huang Z Y, Jiao S Q, Kuang Y. Altering the Reaction Mechanism to Eliminate the Shuttle Effect in Lithium-Sulfur Batteries[J]. Energy Storage Mater., 2020,26:203-212. doi: 10.1016/j.ensm.2020.01.002

    16. [16]

      Polshettiwar V, Cha D, Zhang X, Basset J M. High-Surface-Area Silica Nanospheres (KCC-1) with a Fibrous Morphology[J]. Angew. Chem. Int. Ed., 2010,122(50):9846-9850. doi: 10.1002/ange.201003451

    17. [17]

      Liang X, Garsuch A, Nazar L F. Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium-Sulfur Batteries[J]. Angew. Chem. Int. Ed., 2015,127(13):3979-3983. doi: 10.1002/ange.201410174

    18. [18]

      Zhou S Y, Hu J Y, Liu S G, Lin J X, Cheng J, Mei T, Wang X B, Liao H G, Huang L, Sun S G. Biomimetic Micro Cell Cathode for High Performance Lithium-Sulfur Batteries[J]. Nano Energy, 2020,72104680. doi: 10.1016/j.nanoen.2020.104680

    19. [19]

      Wu Q P, Yao Z G, Zhou X J, Xu J, Cao F H, Li C L. Built-In Catalysis in Confined Nanoreactors for High-Loading Li-S Batteries[J]. ACS Nano, 2020,14(3):3365-3377. doi: 10.1021/acsnano.9b09231

    20. [20]

      Jin Z S, Lin T N, Jia H F, Liu B Q, Zhang Q, Li L, Zhang L Y, Su Z M, Wang C G. Expediting the Conversion of Li2S2 to Li2S Enables High-Performance Li-S Batteries[J]. ACS Nano, 2021,15(4):7318-7327. doi: 10.1021/acsnano.1c00556

    21. [21]

      Cai D, Liu B K, Zhu D H, Chen D, Lu M J, Cao J M, Wang Y H, Huang W H, Shao Y, Tu H, Han W. Ultrafine Co3Se4 Nanoparticles in Nitrogen-Doped 3D Carbon Matrix for High-Stable and Long-Cycle-Life Lithium Sulfur Batteries[J]. Adv. Energy Mater., 2020,10(19)1904273. doi: 10.1002/aenm.201904273

    22. [22]

      Yang X F, Gao X J, Sun Q, Jand S P, Yu Y, Zhao Y, Li X, Adair K, Kuo L Y, Rohrer J, Liang J N, Lin X T, Banis M N, Hu Y F, Zhang H Z, Li X F, Li R Y, Zhang H M, Kaghazchi P, Sham T K, Sun X L. Promoting the Transformation of Li2S2 to Li2S: Significantly Increasing Utilization of Active Materials for High-Sulfur-Loading Li-S Batteries[J]. Adv. Mater., 2019,31(25)1901220. doi: 10.1002/adma.201901220

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    3. [3]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    4. [4]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    5. [5]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    6. [6]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    7. [7]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    10. [10]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    17. [17]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    18. [18]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    19. [19]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    20. [20]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

Metrics
  • PDF Downloads(0)
  • Abstract views(1176)
  • HTML views(180)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return