Citation: Ji-Zhuo HU, Zhi-Guang LIANG, Song-Ling WU, Xiu-Lan CHENG. Synthesis and Luminescent Properties of Blue Emitting Phosphor Sr7Zr(PO4)6: xEu2+[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1361-1366. doi: 10.11862/CJIC.2022.142 shu

Synthesis and Luminescent Properties of Blue Emitting Phosphor Sr7Zr(PO4)6: xEu2+

  • Corresponding author: Xiu-Lan CHENG, 41037387@qq.com
  • Received Date: 15 February 2022
    Revised Date: 18 May 2022

Figures(6)

  • A novel blue-emitting phosphor Sr7Zr(PO4)6: xEu2+was synthesized for the first time via a traditional solidstate reaction method. Phase purity and luminescence properties of these phosphors were studied by X-ray powder diffraction, UV -Vis spectra, and fluorescence spectra. X-ray diffraction results confirmed the pure phase of Eu2+ doped Sr7Zr(PO4)6 materials and they could be efficiently pumped by the near-ultraviolet (NUV) light region from 200 to 400 nm. Excited by 315 nm, Sr7Zr(PO4)6: xEu2+ exhibited a strong and broad emission band ranging from 380 to 480 nm with a maximum peak at 415 nm. The concentration quenching mechanism of Eu2+ in Sr7Zr(PO4)6 was electric dipole-electric dipole interaction, and the critical distance for energy transfer was 2.71 nm. The optimal con-centration of Eu2+ was 0.05 and the corresponding CIE chromaticity coordinate was (0.164, 0.021), exhibiting higher color purity than commercial BaMgAl10O17: Eu2+ (BAM) blue phosphor.
  • 加载中
    1. [1]

      Chen X A, An Y, Xiao W Q. A New Solid Solution Bi1.48Eu0.52Pb0.5Sr0.5B2O7 and Luminescent Properties of the Bi2-xPb0.5Sr0.5B2O7: xEu3+ Phosphors[J]. J. Lumin., 2021,237118137. doi: 10.1016/j.jlumin.2021.118137

    2. [2]

      Ntarisa A V, Daniel D J, Balaji D, Raja A, Kim H J, Quang N D. A Novel Blue-Emitting Phosphors (CsBaYB6O12: Ce3+): Potential Applications in W-LEDs and X-ray Phosphors[J]. J. Alloys Compd., 2021,873159676. doi: 10.1016/j.jallcom.2021.159676

    3. [3]

      Setlur A A. Phosphors for LED-Based Solid-State Lighting[J]. Electrochem. Soc. Interface, 2009,18:32-36. doi: 10.1149/2.F04094IF

    4. [4]

      George N C, Denault K A, Seshadri R. Phosphors for Solid-State White Lighting[J]. Annu. Rev. Mater. Res., 2013,43:481-501. doi: 10.1146/annurev-matsci-073012-125702

    5. [5]

      Li X F, Budai J D, Liu F, Howe J Y, Zhang J H, Wang X J, Gu Z J, Sun C, Meltzer R S, Pan Z W. New Yellow Ba0.93Eu0.07Al2O4 Phosphor for Warm-White Light-Emitting Diodes through Single-Emitting-Center Conversion[J]. Light Sci. Appl., 2013,2e50. doi: 10.1038/lsa.2013.6

    6. [6]

      Jia Y C, Qiao H, Zheng Y H, Guo N, You H P. Synthesis and Photoluminescence Properties of Ce3+and Eu2+-Activated Ca7Mg(SiO4)4 Phosphors for Solid State Lighting[J]. Phys. Chem. Chem. Phys., 2012,14:3537-3542. doi: 10.1039/c2cp23343f

    7. [7]

      Jiao M M, Guo N, Lv W, Jia Y C, Lv W Z, Zhao Q, Shao B Q, You H P. Tunable Blue-Greenemitting Ba3LaNa(PO4)3F: Eu2+, Tb3+ Phosphor with Energy Transfer for Near-UV White LEDs[J]. Inorg. Chem., 2013,52:10340-10346. doi: 10.1021/ic401033u

    8. [8]

      Hecht C, Stadler F, Schmidt P, Gvnne J S A D, Baumann V, Schnick W. SrAlSi4N7: Eu2+-Anitridoalumosilicate Phosphor for Warm White Light (pc) LEDs with Edge-Sharing Tetrahedra[J]. Chem. Mater., 2009,21:1595-1601. doi: 10.1021/cm803231h

    9. [9]

      Hou D J, Liu C M, Ding X M, Kuang X J, Liang H B, Sun S S, Huang Y, Ye T. A High Efficiency Blue Phosphor BaCa2MgSi2O8: Eu2+ under VUV and UV Excitation[J]. J. Mater. Chem. C, 2013,1:493-499. doi: 10.1039/C2TC00129B

    10. [10]

      Lizzo S, Velders A H, Meijerink A, Dirksen G J, Blasse G. The Luminescence of Eu2+ in Magnesium Fluoride Crystals[J]. J. Lumin., 1995,65:303-311. doi: 10.1016/0022-2313(95)00080-1

    11. [11]

      Lv W, Hao Z D, Zhang X, Luo Y S, Wang X J, Zhang J H. Tunable Full-Color Emitting BaMg2Al6Si9O30: Eu2+, Tb3+, Mn2+Phosphors Based on Energy Transfer[J]. Inorg. Chem., 2011,50:7846-7851. doi: 10.1021/ic201033e

    12. [12]

      Zhang D, Zheng B F, Zheng Z B, Li L, Yang Q, Song Y H, Zou B, Zou H F. Multifunctional Ca9NaZn1-yMgy(PO4)7: Eu2+ Phosphor for Full-Spectrum Lighting, Optical Thermometry and Pressure Sensor Applications[J]. Chem. Eng. J., 2022,431133805. doi: 10.1016/j.cej.2021.133805

    13. [13]

      Fulati R, Dai P. The Phase Transition and Photoluminescence Properties of (Ca9-xSrx)Mg1.5(PO4)7: Eu2+ Solid-Solution Phosphors[J]. ECS J. Solid State Sci. Technol., 2021,10036005. doi: 10.1149/2162-8777/abefae

    14. [14]

      Wang M, Xie G Y, Tang W J. Effect of[Ln3+-Si4+](Ln=Y, La, Gd, Lu) Cosubstitution on the Structure and Luminescence Property of Sr9Mg1.5(PO4)7: Eu2+ Phosphor[J]. Phys. Status Solidi A, 2021,2192100582.

    15. [15]

      Shinde K N, Dhoble S J. Europium-Activated Orthophosphate Phosphors for Energy-Efficient Solid-State Lighting: A Review[J]. Crit. Rev. Solid State Mater. Sci., 2014,39:459-479. doi: 10.1080/10408436.2013.803456

    16. [16]

      Xie F, Cui Y X, She M, Wang X F, Liu C S. Press Dependent Electronic Structure and Optical Property of Ba2Mg(PO4)2: Eu2+[J]. J. Alloys Compd., 2021,883160870. doi: 10.1016/j.jallcom.2021.160870

    17. [17]

      Liu S H, Deng B, Yang J H, Liu J H, Chen J, Zeng F H, Wang H Y, Yu R J, Zhang G G. Multi-site Occupancies and Luminescence Properties of Cyan-Emitting Ca9-xNaGd2/3(PO4)7: Eu2+ Phosphor for White Light-Emitting Diodes[J]. J. Rare Earths, 2022,40:243-252. doi: 10.1016/j.jre.2021.01.007

    18. [18]

      Chen M, Lai Y Q, Zhou J G, Shi C, Li B J, Wu D W, Wang B, Ding J Y, Jiang X Y, Wu H G, Wu Q S. Near-Ultraviolet Excited Broadband Orange-Yellow Emitting Sr8MgIn(PO4)7: Eu2+ Phosphors for WLEDs with High Color Rendering Index[J]. Opt. Mater., 2021,115111055. doi: 10.1016/j.optmat.2021.111055

    19. [19]

      Fukuda K, Matsubara H, Fukutani K, Yoshida H. Powder X-ray Diffraction Data of a New Calcium Zirconium Phosphate Ca7Zr(PO4)6[J]. Powder Diffr., 2004,19:385-387. doi: 10.1154/1.1786299

    20. [20]

      Nair G B, Dhoble S J. White Light Emitting MZr4(PO4)6: Dy3+(M=Ca, Sr, Ba) Phosphors for WLEDs[J]. J. Fluoresc., 2017,27:575-585. doi: 10.1007/s10895-016-1985-y

    21. [21]

      Zhang Z W, Shen P X, Wu Y N, Zhang X F, Zhang J P, Zhang W G, Wang D J. Photoluminescence Properties of a Novel Red Emitting Sr7Zr(PO4)6: Eu3+ Phosphor[J]. Opt. Mater., 2014,37:866-869. doi: 10.1016/j.optmat.2014.05.029

    22. [22]

      Huang C H, Chiu Y C, Yeh Y T, Chen T M. Novel Eu2+-Activated Yellow-Emitting Sr8MgLu(PO4)7 Phosphors for White-Light Near-Ultraviolet LEDs[J]. Mater. Express, 2012,2:303-310. doi: 10.1166/mex.2012.1081

    23. [23]

      Shannon R D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides[J]. Acta Crystallogr. Sect. A: Found. Crystallogr., 1976,32:751-767.

    24. [24]

      Chen P C, Zhou L Y, Mo F W, Guan A X, Huang N, Gan Y F, Chen M Y, Zhang W. A Novel Blue Luminescent Material Sr6Ca4(PO4)6F2: Eu2+[J]. Mater. Res. Bull., 2015,72:191-196. doi: 10.1016/j.materresbull.2015.07.031

    25. [25]

      Chen X, Lv F Z, Ma Y, Zhang Y H. Preparation and Spectroscopic Investigation of Novel NaAlP2O7: Eu2+, Phosphors for White LEDs[J]. J. Alloys Compd., 2016,680:20-25. doi: 10.1016/j.jallcom.2016.04.125

    26. [26]

      Xiao F, Xue Y N, Pan Y X, Zhang Q Y. White Light Generation in Euand Mn-Codoped Ca7Mg2P6O24 Phosphor for White Light-Emitting Diodes[J]. Spectrochim. Acta A, 2010,77:638-642. doi: 10.1016/j.saa.2010.07.001

    27. [27]

      Geng D L, Shang M M, Zhang Y, Cheng Z Y, Lin J. Tunable and White-Light Emission from Single-Phase Ca2YF4PO4: Eu2+, Mn2+ Phosphors for Application in W-LEDs[J]. Eur. J. Inorg. Chem., 2013,16:2947-2953.

    28. [28]

      Blasse G. Energy Pransfer between Inequivalent Eu Ions[J]. J. Solid State Chem., 1986,2:207-211.

    29. [29]

      Jia T J, Ci Z P, Wu Q S, Zhu G, Wang C, Wang Y H. Tunable Luminescence and Energy Transfer Investigation in Sr8La2[(PO4)4.5(SiO4)2(BO4)0.5](BO2): Ce3+/Mn2+ for White-Light-Emitting Diodes[J]. ECS J. Solid State Sci. Technol., 2015,4:R78-R82. doi: 10.1149/2.0281505jss

    30. [30]

      van Uitert L G. An Empirical Relation Fitting the Position in Energy of the Lower D-Band Edge for Eu2+ or Ce3+ in Various Compounds[J]. J. Lumin., 1984,29(1):1-9. doi: 10.1016/0022-2313(84)90036-X

    31. [31]

      Xia Z G, Liu R S, Huang K W, Drozd V. Ca2Al3O6F: Eu2+: A Green-Emitting Oxy-fluoride Phosphor for White Light-Emitting Diodes[J]. J. Mater. Chem., 2012,30:15183-15189.

  • 加载中
    1. [1]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    2. [2]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    3. [3]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    4. [4]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    5. [5]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

    8. [8]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    9. [9]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    10. [10]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    13. [13]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    14. [14]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(5)
  • Abstract views(747)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return