Citation: Jia-Bin LUO, Jin-Zhong GUO, Zhi-Yin XIAO, Wei ZHONG, Xue-Ming LI, Xiao-Ming LIU. Preparation of Dicarbonyl Iron Compounds with a Bidentate Phosphine and Their CO Release Behaviors upon Irradiation[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1241-1251. doi: 10.11862/CJIC.2022.134 shu

Preparation of Dicarbonyl Iron Compounds with a Bidentate Phosphine and Their CO Release Behaviors upon Irradiation

Figures(12)

  • CO-releasing molecule (CORM) facilitates the precise delivery of CO in the human body. To improve the stability of CORM, iron dicarbonyl compounds bearing a bidentate phosphine ligand, [Fe(cis-CO)2(dppp)I2] (1, dppe=1, 2-bis(diphenylphosphino)ethane), [Fe(cis-CO)2(dppp)I2] (2, dppp=1, 3-bis(diphenylphosphino)propane), and[Fe(trans-CO)2{Ph2PN(cyclohexyl)PPh2}I2] (3) were prepared by reacting of the precursor[Fe(CO)4I2] with the phosphine ligands via coordination substitution reactions. The compounds were structurally characterized by means of FT-IR, UV-Vis, NMR, elemental analysis, and single-crystal X-ray diffraction (for compounds 2 and 3). Moreover, CO-releasing behaviors of compounds 1-3 in DMSO were investigated by FT-IR to evaluate their application as a potential CORM. As demonstrated by the FT-IR spectroscopical monitoring, these compounds exhibited good stability in the dark but were easily decomposed to release CO upon irradiation of visible lights (red, green, and blue lights). Their degradation with CO release depends on the energy of the light source and the chemical structures of the compounds. Moreover, isomerization transformations of compounds 1 and 2 from cis- to trans-dicarbonyl configuration were confirmed by the FT-IR spectroscopy under the green and blue lights. However, the red light did not trigger the configuration conversion due to its low energy. Among them, the trans-dicarbonyl compound 3 exhibited the best stability upon the irradiation, which adopted a zero-order model for the photo-induced CO release.
  • 加载中
    1. [1]

      Yang X X, Lu W, Hopper C P, Ke B W, Wang B H. Nature's Marvels Endowed in Gaseous Molecules Ⅰ: Carbon Monoxide and its Physiological and Therapeutic Roles[J]. Acta Pharm. Sin. B, 2021,11(6):1434-1445.

    2. [2]

      ZHOU L L, ZHOU Y Q, TANG Y L, YANG K W, ZHANG L, GAO L X, ZHANG G F, GAO Z W, ZHANG W Q. Antibacterial Fischer Carbenoid CO-Releasing Molecules[J]. Chin. J. Org. Chem., 2016,36(11):2695-2703.

    3. [3]

      WANG X, SONG M M, SHEN W C, QIN W T, LU W H, SUN B W. Effect and Mechanism of Exogenous Carbon Monoxide Against Excessive Neutrophil Infiltration in Liver and Lung Tissues during Sepsis[J]. Chinese Journal of Trauma, 2015,31(3):201-206.

    4. [4]

      Liu H P, Gong Y G, Zhang T F, Li N, Zhao Q Y, Chen Y L, Liu B, Zheng Y W. Syntheses, Cytotoxicity and Properties of CO Releasing Molecules Containing Acetyl Salicylamide-3-pyridine[J]. Chin. J. Chem., 2015,33(7):739-748.

    5. [5]

      RUAN Y L, WANG L, ZHAO Y, WANG J X, CHEN S, MING C S, CHEN G. Carbon Monoxide-Releasing Molecule CORM-2 Protects Against Renal Ischemia-Reperfusion Injury in Mice[J]. Chinese Journal of Organ Transplantation, 2013,34(11):685-689.

    6. [6]

      YANG Y C, ZHOU J L, HUANG X L, ZHONG W J. Role of CO-Releasing Molecule in the Lung Injuried by Limb Ischemia-Reperfusion[J]. Chinese Journal of Emergency Medicine, 2012,21(1):43-47.

    7. [7]

      MENG X L, FEI D S, NAN C C, KANG K, PAN S H, LUO Y P, YANG S L, ZHAO M Y. The Effect of CORM-2 on Pulmonary Fibrosis of Aged Mice Induced by Paraquat and Its Mechanism[J]. Chinese Journal of Gerontology, 2012,32(6):1174-1176.

    8. [8]

      CHEN P, WANG W W, WANG G, CHEN H, SUN B, JIANG H C. An Experimental Study on Protective Effect of Carbon Monoxide Releasing Molecule on Severe Acute Pancreatitis Induced Lung Injury[J]. Chinese Journal of Hepatobiliary Surgery, 2010,16(3):196-199.

    9. [9]

      Motterlini R, Otterbein L E. The Therapeutic Potential of Carbon Monoxide[J]. Nat. Rev. Drug Discov., 2010,9(9):728-743.

    10. [10]

      Zhou J L, Li G, Hai Y, Guan L, Huang X L, Sun P. Protection of Carbon Monoxide-Releasing Molecule against Lung Injury Induced by Limb Ischemia-Reperfusion[J]. Chin. J. Traumatol., 2009,12(2):71-76.

    11. [11]

      Kim H P, Ryter S W, Choi A M K. CO as a Cellular Signaling Molecule[J]. Annu. Rev. Pharmacool. Toxicol., 2006,46(1):411-449.

    12. [12]

      Motterlini R, Clark J E, Foresti R, Sarathchandra P, Mann B E, Green C J. Carbon Monoxide-Releasing Molecules-Characterization of Biochemical and Vascular Activities[J]. Circ. Res., 2002,90(2):E17-E24.

    13. [13]

      Ji X Y, Wang B H. Strategies toward Organic Carbon Monoxide Prodrugs[J]. Acc. Chem. Res., 2018,51(6):1377-1385.

    14. [14]

      MannBE . CO-ReleasingMolecules: APersonalView[J]. Organometallics, 2012,31(16):5728-5735.

    15. [15]

      Romao C C, Blattler W A, Seixas J D, Bernardes G J L. Developing Drug Molecules for Therapy with Carbon Monoxide[J]. Chem. Soc. Rev., 2012,41(9):3571-3583.

    16. [16]

      Wright M A, Wright J A. PhotoCORMs: CO Release Moves into the Visible[J]. Dalton Trans., 2016,45(16):6801-6811.

    17. [17]

      Ling K, Men F, Wang W C, Zhou Y Q, Zhang H W, Ye D W. Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection and Development of Carbon Monoxide-Releasing Molecules (CO-RMs)[J]. J. Med. Chem., 2017,61(7):2611-2635.

    18. [18]

      Ford P C. Metal Complex Strategies for Photo-Uncaging the Small Molecule Bioregulators Nitric Oxide and Carbon Monoxide[J]. Coord. Chem. Rev., 2018,376:548-564.

    19. [19]

      Wang P P, Liu H P, Zhao Q Y, Chen Y L, Liu B, Zhang B P, Zheng Q. Syntheses and Evaluation of Drug-Like Properties of CO-Releasing Molecules Containing Ruthenium and Group 6 Metal[J]. Eur. J. Med. Chem., 2014,74:199-215.

    20. [20]

      Zhang T F, Li M, Gong Y G, Xi N, Zheng Y W, Zhao Q Y, Chen Y L, Liu B. Syntheses, Properties and Bio-activities of Water-Soluble CO-Releasing Molecule Based on Manganese[J]. J. Biol. Inorg. Chem., 2016,21(7):807-824.

    21. [21]

      ZHANG X L, TIAN G, ZHANG X, WANG Q, GU Z J. Controlled Release of Carbon Monoxide Based on Nanomaterials and Their Biomedical Applications[J]. Acta Chim. Sinica, 2019,77(5):406-417.

    22. [22]

      Shao C C, Duan H Y, Min Y Q, Zhang X H. Diphenyl Cyclopropenone-Centered Polymers for Site-Specific CO-Releasing and Chain Dissociation[J]. Chin. Chem. Lett., 2020,31(1):299-302.

    23. [23]

      Jiang X J, Xiao Z Y, Zhong W, Liu X M. Brief Survey of Diiron and Monoiron Carbonyl Complexes and Their Potentials as CO-Releasing Molecules (CORMs)[J]. Coord. Chem. Rev., 2021,429213634.

    24. [24]

      LIANG S W, ZHONG W, ZHAN C X, ZHAO J, LI W Q, YE P, WANG H D, SHEN J, FAN L, XIAO Z Y, LIU X M. Synthesis and Characterization of [FeFe]-Hydrogenase Model Complex Functionalized Polymers Based on Different Content of Alkaline Group[J]. Chinese J. Inorg. Chem., 2015,31(1):87-96.

    25. [25]

      Mann B E. Carbon Monoxide: An Essential Signalling Molecule[J]. Top. Organomet. Chem., 2010,32:247-285.

    26. [26]

      Zhang W Q, Atkin A J, Thatcher R J, Whitwood A C, Fairlamb I J S, Lynam J M. Diversity and Design of Metal-Based Carbon Monoxide-Releasing Molecules (CO-RMs) in Aqueous Systems: Revealing the Essential Trends[J]. Dalton Trans., 2009(22):4351-4358.

    27. [27]

      Zhou N, Peng L, Salgado S H, Yuan J Y, Wang X S. Synthesis of Air-Stable Cyclopentadienyl Fe(CO)2(Fp) Polymers by a Host-Guest Interaction of Cyclodextrin with Air-Sensitive Fp Pendant Groups[J]. Angew. Chem. Int. Ed., 2017,56(22):6246-6250.

    28. [28]

      Nakae T, Hirotsu M, Nakajima H. CO Release from N, C, S-Pincer Iron(Ⅲ) Carbonyl Complexes Induced by Visible-to-NIR Light Irradiation: Mechanistic Insight into Effects of Axial Phosphorus Ligands[J]. Inorg. Chem., 2018,57(14):8615-8626.

    29. [29]

      Guo Z M, Jin J, Xiao Z Y, Chen N W, Jiang X J, Liu X M, Wu L F, He Y, Zhang S H. Four Iron(Ⅱ) Carbonyl Complexes Containing both Pyridyl and Halide Ligands: Their Synthesis, Characterization, Stability, and Anticancer Activity[J]. Appl. Organomet. Chem., 2021,35(1)e6045.

    30. [30]

      Guo J Z, Guo Z M, Xiao Z Y, Jin J, Yang X Q, He Y, Liu X M. Further Exploration of the Reaction between cis-[Fe(CO)4I2] and Alkylamines: An Aminium Salt of fac-[Fe(CO)3I3]- or an Amine-Bound Complex of fac-[Fe(CO)3I2(NH2R)]?[J]. Organomet. Chem., 2021,35(8)e6280.

    31. [31]

      Yang X Q, Jin J, Guo Z M, Xiao Z Y, Chen N W, Jiang X J, He Y, Liu X M. The Monoiron Anion fac-[Fe(CO)3I3]- and Its Organic Aminium Salts: Their Preparation, CO-Release, and Cytotoxicity[J]. New J. Chem., 2020,44(25):10300-10308.

    32. [32]

      Xiao Z Y, Jiang R, Jin J, Yang X Q, Xu B Y, Liu X M, He Y B, He Y. Diiron(Ⅱ) Pentacarbonyl Complexes as CO-Releasing Molecules: Their Synthesis, Characterization, CO-Releasing Behaviour and Biocompatibility[J]. Dalton Trans., 2019,48(2):468-477.

    33. [33]

      Ou J, Zheng W H, Xiao Z Y, Yan Y P, Jiang X J, Dou Y, Jiang R, Liu X M. Core-Shell Materials Bearing Iron (Ⅱ) Carbonyl Units and Their CO-Release via an Upconversion Process[J]. J. Mater. Chem. B, 2017,5(41):8161-8168.

    34. [34]

      Jiang X J, Chen L M, Wang X, Long L, Xiao Z Y, Liu X M. Photoinduced Carbon Monoxide Release from Half-Sandwich Iron (Ⅱ) Carbonyl Complexes by Visible Irradiation: Kinetic Analysis and Mechanistic Investigation[J]. Chem. Eur. J., 2015,21(37):13065-13072.

    35. [35]

      Long L, Jiang X J, Wang X, Xiao Z Y, Liu X M. Water-Soluble Diiron Hexacarbonyl Complex as a CO-RM: Controllable CO-Releasing, Releasing Mechanism and Biocompatibility[J]. Dalton Trans., 2013,42(44):15663-15669.

    36. [36]

      Xiao Z Y, Natarajan M, Zhong W, Liu X M. Probing into the Electrochemistry of Four Nickel (Ⅱ) and Cobalt (Ⅱ) Complexes with Azadiphosphine Ligands (PNP) and Their Catalysis on Proton Reduction[J]. Electrochim. Acta, 2020,340135998.

    37. [37]

      Xiao Z Y, Wei Z H, Long L, Wang Y L, Evans D J, Liu X M. Diiron Carbonyl Complexes Possessing a {Fe(Ⅱ)Fe(Ⅱ)} Core: Synthesis, Characterisation, and Electrochemical Investigation[J]. Dalton Trans., 2011,40(16):4291-4299.

    38. [38]

      Li B, Liu T B, Popescu C V, Bilko A, Darensbourg M Y. Synthesis and Mossbauer Characterization of Octahedral Iron(Ⅱ) Carbonyl Complexes FeI2(CO)3L and FeI2(CO)2L2: Developing Models of the [Fe]-H2ase Active Site[J]. Inorg. Chem., 2009,48(23):11283-11289.

    39. [39]

      Ma X Y, Zhang X, Wang J C, Li S, Zhang T Y, Jiang S, Li B. Diphosphine Ligand-Containing Model Complex of [Fe]-H2ase Active Site as Direct Phenol Hydroxylation Catalyst in the Aqueous Phase[J]. J. Chem. Technol. Biotechnol., 2022,97(5):1200-1206.

    40. [40]

      Eady S C, Breault T, Thompson L, Lehnert N. Highly Functionalizable Penta-Coordinate Iron Hydrogen Production Catalysts with Low Overpotentials[J]. Dalton Trans., 2016,45(3):1138-1151.

    41. [41]

      Wang X F, Li Z M, Zeng X R, Luo Q Y, Evans D J, Pickett C J, Liu X M. The Iron Centre of the Cluster-Free Hydrogenase (Hmd): Low-Spin Fe(Ⅱ) or Low-Spin Fe(0)? Chem[J]. Commun., 2008(30):3555-3557.

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    3. [3]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    4. [4]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    7. [7]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    13. [13]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    14. [14]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    15. [15]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    16. [16]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    17. [17]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    18. [18]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

Metrics
  • PDF Downloads(4)
  • Abstract views(1300)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return