Citation: Hui XU, Lu ZHAO, Yun-Feng BAI, Feng FENG. Research Progress in Cancer Treatment of Aptamer Functionalized Gold Nanorods[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1226-1240. doi: 10.11862/CJIC.2022.129 shu

Research Progress in Cancer Treatment of Aptamer Functionalized Gold Nanorods

Figures(7)

  • Gold nanorods (GNRs) have attracted great attention in various biomedical applications such as drug delivery, photothermal therapy, photodynamic therapy, and photoacoustic imaging because of their larger specific surface area, easy synthesis, surface modification, stability, and strong absorption and scattering in NIR region. Aptamers are oligonucleotide sequences with a length of about 20-80 bases which have abilities to bind to specific target molecules, enabling specific recognition and binding to cancer cells or their membrane proteins. Aptamer could act as ligands and be modified onto GNRs, aptamer-functionalized GNRs can actively target and identify cancer cells, showing a good application prospect in the field of cancer therapy. Herein, we overview the recent progress in the designs and applications of aptamer-targeted GNRs for cancer therapy. GNRs can be used as photothermal agents, as well as nanocarriers of drugs, photosensitizers, and small interfering RNA to achieve cancer combina- tion therapies. According to the differences in the mechanism of cancer therapy, the applications of aptamer-functionalized GNRs nanosystems for cancer therapy are reviewed, which are divided into four aspects: photothermal therapy, photodynamic therapy, chemotherapy, and combination therapy. Combination therapy includes photothermal therapy/chemotherapy, photothermal therapy/photodynamic therapy, photothermal therapy/gene therapy, photothermal therapy/chemotherapy/gene therapy, and photothermal therapy/chemotherapy/photodynamic therapy. Finally, we elaborate on the current challenge and future perspectives of aptamer-functionalized GNRs for cancer therapy.
  • 加载中
    1. [1]

      Siegel R L, Miller K D, Fuchs H E, Jemal A. Cancer Statistics, 2022[J]. CA-Cancer J. Clin., 2022,72(1):7-33.

    2. [2]

      Macdonald J S, Smalley S R, Benedetti J, Hundahl S A, Estes N C, Stemmermann G N, Haller D G, Ajani J A, Gunderson L L, Jessup J M, Martenson J A. Chemoradiotherapy after Surgery Compared with Surgery Alone for Adenocarcinoma of the Stomach or Gastroesophageal Junction[J]. N. Engl. J. Med., 2001,345(10):725-730.

    3. [3]

      Haine A T, Niidome T. Gold Nanorods as Nanodevices for Bioimaging, Photothermal Therapeutics, and Drug Delivery[J]. Chem. Pharm. Bull., 2017,65(7):625-628.

    4. [4]

      Shanmugam V, Selvakumar S, Yeh C S. Near-Infrared Light-Responsive Nanomaterials in Cancer Therapeutics[J]. Chem. Soc. Rev., 2014,43(17):6254-6287.

    5. [5]

      Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra B D. Recent Advances in Carbon Based Nanosystems for Cancer Theranostics[J]. Biomater. Sci., 2017,5(5):901-952.

    6. [6]

      Liu S, Pan X T, Liu H Y. Two-Dimensional Nanomaterials for Photothermal Therapy[J]. Angew. Chem. Int. Ed., 2020,59(15):5890-5900.

    7. [7]

      Huang H, Feng W, Chen Y. Two-Dimensional Biomaterials: Material Science, Biological Effect and Biomedical Engineering Applications[J]. Chem. Soc. Rev., 2021,50(20):11381-11485.

    8. [8]

      Gupta N, Chan Y H, Saha S, Liu M H. Recent Development in Near-Infrared Photothermal Therapy Based on Semiconducting Polymer Dots[J]. ACS Appl. Polym. Mater., 2020,2(10):4195-4221.

    9. [9]

      Wang Y, Meng H M, Song G, Li Z, Zhang X B. Conjugated-Polymer-Based Nanomaterials for Photothermal Therapy[J]. ACS Appl. Polym. Mater., 2020,2(10):4258-4272.

    10. [10]

      Zhu H J, Cheng P H, Chen P, Pu K Y. Recent Progress in the Development of Near-Infrared Organic Photothermal and Photodynamic Nanotherapeutics[J]. Biomater. Sci., 2018,6(4):746-765.

    11. [11]

      Hu Q L, Huang Z M, Duan Y K, Fu Z W, Liu B. Reprogramming Tumor Microenvironment with Photothermal Therapy[J]. Bioconjugate Chem., 2020,31(5):1268-1278.

    12. [12]

      Liu Y J, Bhattarai P, Dai Z F, Chen X Y. Photothermal Therapy and Photoacoustic Imaging via Nanotheranostics in Fighting Cancer[J]. Chem. Soc. Rev., 2019,48(7):2053-2108.

    13. [13]

      Lohse S E, Murphy C J. The Quest for Shape Control: A History of Gold Nanorod Synthesis[J]. Chem. Mater., 2013,25(8):1250-1261.

    14. [14]

      Huang X H, Jain P K, El-Sayed I H, El-Sayed M A. Plasmonic Photothermal Therapy (PPTT) Using Gold Nanoparticles[J]. Lasers Med. Sci., 2007,23(3):217-228.

    15. [15]

      Alkilany A M, Thompson L B, Boulos S P, Sisco P N, Murphy C J. Gold Nanorods: Their Potential for Photothermal Therapeutics and Drug Delivery, Tempered by the Complexity of Their Biological Interactions[J]. Adv. Drug Deliver Rev., 2012,64(2):190-199.

    16. [16]

      Xu W Z, Lin Q L, Yin Y Q, Xu D, Huang X H, Xu B C, Wang G W. A Review on Cancer Therapy Based on the Photothermal Effect of Gold Nanorod[J]. Curr. Pharm. Des., 2019,25(46):4836-4837.

    17. [17]

      Chen F, Si P, De La Zerda A, Jokerst J V, Myung D. Gold Nanoparticles to Enhance Ophthalmic Imaging[J]. Biomater. Sci., 2021,9(2):367-390.

    18. [18]

      Adnan N N M, Cheng Y Y, Ong N M N, Kamaruddin T T, Rozlan E, Schmidt T W, Duong H T T, Boyer C. Effect of Gold Nanoparticle Shapes for Phototherapy and Drug Delivery[J]. Polym. Chem., 2016,7(16):2888-2903.

    19. [19]

      González-Rubio G, Kumar V, Llombart P, Díaz-Núñez P, Bladt E, Altantzis T, Bals S, Peña-Rodríguez O, Noya E G, Macdowell L G, Guerrero-Martínez A, Liz-Marzán L M. Disconnecting Symmetry Breaking from Seeded Growth for the Reproducible Synthesis of High Quality Gold Nanorods[J]. ACS Nano, 2019,13(4):4424-4435.

    20. [20]

      Jain P K, Huang X H, El-Sayed I H, El-Sayed M A. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine[J]. Acc. Chem. Res., 2008,41(12):1578-1586.

    21. [21]

      Kim F, Song J H, Yang P D. Photochemical Synthesis of Gold Nanorods[J]. J. Am. Chem. Soc., 2002,124(48):14316-14317.

    22. [22]

      Jana N R, Gearheart L, Murphy C J. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods[J]. J. Phys. Chem. B, 2001,105(19):4065-4067.

    23. [23]

      Zheng J P, Cheng X Z, Zhang H, Bai X P, Ai R Q, Shao L, Wang J F. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles[J]. Chem. Rev., 2021,121(21):13342-13453.

    24. [24]

      Burrows N D, Lin W, Hinman J G, Dennison J M, Vartanian A M, Abadeer N S, Grzincic E M, Jacob L M, Li J, Murphy C J. Surface Chemistry of Gold Nanorods[J]. Langmuir, 2016,32(39):9905-9921.

    25. [25]

      Marasini R, Pitchaimani A, Nguyen T D T, Comer J, Aryal S. The Influence of Polyethylene Glycol Passivation on the Surface Plasmon Resonance Induced Photothermal Properties of Gold Nanorods[J]. Nanoscale, 2018,10(28):13684-13693.

    26. [26]

      Abdelrasoul G N, Magrassi R, Dante S, D'amora M, D'abbusco M S, Pellegrino T, Diaspro A. PEGylated Gold Nanorods as Optical Trackers for Biomedical Applications: An In Vivo and In Vitro Comparative Study[J]. Nanotechnology, 2016,27(25)255101.

    27. [27]

      Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y. PEG-Modified Gold Nanorods with a Stealth Character for In Vivo Applications[J]. J. Controlled Release, 2006,114(3):343-347.

    28. [28]

      Manivasagan P, Bharathiraja S, Santha Moorthy M, Oh Y O, Song K, Seo H, Oh J. Anti-EGFR Antibody Conjugation of Fucoidan-Coated Gold Nanorods as Novel Photothermal Ablation Agents for Cancer Therapy[J]. ACS Appl. Mater. Interfaces, 2017,9(17):14633-14646.

    29. [29]

      Cao W, Wang X D, Song L, Wang P Y, Hou X M, Zhang H C, Tian X D, Liu X L, Zhang Y. Folic Acid-Conjugated Gold Nanorod@Polypyrrole@Fe3O4 Nanocomposites for Targeted MR/CT/PA Multimodal Imaging and Chemo- Photothermal Therapy[J]. RSC Adv., 2019,9(33):18874-18887.

    30. [30]

      Manivasagan P, Jun S W, Nguyen V T, Truong N T P, Hoang G, Mondal S, Santha Moorthy M, Kim H, Vy Phan T T, Doan V H M, Kim C S, Oh J. A Multifunctional Near-Infrared Laser-Triggered Drug Delivery System Using Folic Acid Conjugated Chitosan Oligosaccharide Encapsulated Gold Nanorods for Targeted Chemo-Photothermal Therapy[J]. J. Mater. Chem. B, 2019,7(24):3811-3825.

    31. [31]

      Zhang J, Luo X, Wu Y P, Wu F, Li Y F, He R R, Liu M X. Rod in Tube: A Novel Nanoplatform for Highly Effective Chemo-Photothermal Combination Therapy toward Breast Cancer[J]. ACS Appl. Mater. Interfaces, 2019,11(4):3690-3703.

    32. [32]

      Li C, Feng K, Xie N, Zhao W H, Ye L, Chen B, Tung C H, Wu L Z. Mesoporous Silica-Coated Gold Nanorods with Designable Anchor Peptides for Chemo-Photothermal Cancer Therapy[J]. ACS Appl. Nano Mater., 2020,3(6):5070-5078.

    33. [33]

      Zhong Y A, Meng F H, Deng C, Zhong Z Y. Ligand-Directed Active Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy[J]. Biomacromolecules, 2014,15(6):1955-1969.

    34. [34]

      Wu L L, Wang Y D, Xu X, Liu Y L, Lin B Q, Zhang M X, Zhang J L, Wan S, Yang C Y, Tan W H. Aptamer-Based Detection of Circulating Targets for Precision Medicine[J]. Chem. Rev., 2021,121(19):12035-12105.

    35. [35]

      Ni S J, Zhuo Z J, Pan Y F, Yu Y Y, Li F F, Liu J, Wang L Y, Wu X Q, Li D, Wan Y Y, Zhang L H, Yang Z J, Zhang B T, Lu A P, Zhang G. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications[J]. ACS Appl. Mater. Interfaces, 2021,13(8):9500-9519.

    36. [36]

      Ellington A D, Szostak J W. In Vitro Selection of RNA Molecules that Bind Specific Ligands[J]. Nature, 1990,346(6287):818-822.

    37. [37]

      Robertson D L, Joyce G F. Selection In Vitro of an RNA Enzyme that Specifically Cleaves Single-Stranded DNA[J]. Nature, 1990,344(6265):467-468.

    38. [38]

      Zhou J H, Rossi J. Aptamers as Targeted Therapeutics: Current Potential and Challenges[J]. Nat. Rev. Drug Discovery, 2017,16(3):181-202.

    39. [39]

      Xie S T, Ai L L, Cui C, Fu T, Cheng X D, Qu F L, Tan W H. Functional Aptamer-Embedded Nanomaterials for Diagnostics and Therapeutics[J]. ACS Appl. Mater. Interfaces, 2021,13(8):9542-9560.

    40. [40]

      Mallikaratchy P. Evolution of Complex Target SELEX to Identify Aptamers against Mammalian Cell-Surface Antigens[J]. Molecules, 2017,22(2)215.

    41. [41]

      Bai Y F, Feng F, Zhao L, Chen Z Z, Wang H Y, Duan Y L. A Label-Free Fluorescent Sensor for Hg2+ Based on Target-Induced Structure-Switching of G-Quadruplex[J]. Anal. Methods, 2014,6(3):662-665.

    42. [42]

      Bai Y F, Feng F, Zhao L, Chen Z Z, Wang H Y, Duan Y L. A Turn-On Fluorescent Aptasensor for Adenosine Detection Based on Split Aptamers and Graphene Oxide[J]. Analyst, 2014,139(8):1843-1846.

    43. [43]

      Bai Y F, Feng F, Zhao L, Wang C, Wang H Y, Tian M Z, Qin J, Duan Y L, He X X. Aptamer/Thrombin/Aptamer- AuNPs Sandwich Enhanced Surface Plasmon Resonance Sensor for the Detection of Subnanomolar Thrombin[J]. Biosens. Bioelectron., 2013,47:265-270.

    44. [44]

      Bai Y F, Zhang H L, Zhao L, Wang Y Z, Chen X L, Zhai H, Tian M Z, Zhao R R, Wang T, Xu H, Feng F. A Novel Aptasensor Based on HCR and G-Quadruplex DNAzyme for Fluorescence Detection of Carcinoembryonic Antigen[J]. Talanta, 2020,221121451.

    45. [45]

      Bai Y F, Zhao L, Chen Z Z, Wang H Y, Feng F. A Label-Free Fluorescent Sensor for Pb2+ Based on G-Quadruplex and Graphene Oxide[J]. Anal. Methods, 2014,6(20):8120-8123.

    46. [46]

      Bai Y F, Zhao R F, Feng F, He X X. Determination of Lysozyme by Thiol-Terminated Aptamer-Based Surface Plasmon Resonance[J]. Anal. Lett., 2016,50(4):682-689.

    47. [47]

      Dai Y Y, Liu Z C, Bai Y F, Chen Z Z, Qin J, Feng F. A Novel Highly Fluorescent S, N, O Co-doped Carbon Dots for Biosensing and Bioimaging of Copper Ions in Live Cells[J]. RSC Adv., 2018,8(73):42246-42252.

    48. [48]

      Li R, Feng F, Chen Z Z, Bai Y F, Guo F F, Wu F Y, Zhou G. Sensitive Detection of Carcinoembryonic Antigen Using Surface Plasmon Resonance Biosensor with Gold Nanoparticles Signal Amplification[J]. Talanta, 2015,140(1):143-149.

    49. [49]

      Liu H Y, Bai Y F, Qin J, Chen Z Z, Feng F. A Novel Fluorescent Concanavalin a Detection Platform Using an Anti-concanavalin A Aptamer and Graphene Oxide[J]. Anal. Methods, 2017,9(5):744-747.

    50. [50]

      Liu H Y, Bai Y F, Qin J, Wang H Y, Wang Y Z, Chen Z Z, Feng F. Exonuclease Ⅰ Assisted Fluorometric Aptasensor for Adenosine Detection Using 2-AP Modified DNA[J]. Sens. Actuators B, 2018,256:413-419.

    51. [51]

      Zhang Y, Bai Y F, Feng F, Shuang S M. A Graphene Oxide-Based Fluorescent Aptasensor for Alpha-Fetoprotein Detection[J]. Anal. Methods, 2016,8(32):6131-6134.

    52. [52]

      Santos Do Carmo F, Ricci-Junior E, Cerqueira-Coutinho C, Albernaz M S, Bernardes E S, Missailidis S, Santos-Oliveira R. Anti-MUC1 Nano-Aptamers for Triple-Negative Breast Cancer Imaging by Single-Photon Emission Computed Tomography in Inducted Animals: Initial Considerations[J]. Int. J. Nanomed., 2017,12:53-60.

    53. [53]

      Liu J, Wei T, Zhao J, Huang Y, Deng H, Kumar A, Wang C, Liang Z, Ma X, Liang X J. Multifunctional Aptamer-Based Nanoparticles for Targeted Drug Delivery to Circumvent Cancer Resistance[J]. Biomaterials, 2016,91:44-56.

    54. [54]

      Nimjee S M, White R R, Becker R C, Sullenger B A. Aptamers as Therapeutics[J]. Annu. Rev. Pharmacol. Toxicol., 2017,57:61-79.

    55. [55]

      Bagalkot V, Farokhzad O C, Langer R, Jon S. An Aptamer-Doxorubicin Physical Conjugate as a Novel Targeted Drug-Delivery Platform[J]. Angew. Chem.Int. Ed., 2006,45(48):8149-8152.

    56. [56]

      Bai Y F, Zhang Z Z, Cheng L J, Wang R X, Chen X L, Kong Y F, Feng F, Ahmad N, Li L, Liu X Q. Inhibition of Enhancer of Zeste Homolog 2(EZH2) Overcomes Enzalutamide Resistance in Castration-Resistant Prostate Cancer[J]. J. Bioned. Opt., 2019,294(25):9911-9923.

    57. [57]

      Kang G F, Wang Y Z, Bai Y F, Chen Z Z, Feng F. Surface Plasmon Resonance Based Competitive Immunoassay for Cd2+[J]. RSC Adv., 2017,7(70):44054-44058.

    58. [58]

      Li H, Peng Q S, Yang L Y, Lin Y S, Chen S, Qin Y Y, Li S P, Yu X Y, Zhang L M. High-Performance Dual Combination Therapy for Cancer Treatment with Hybrid Membrane-Camouflaged Mesoporous Silica Gold Nanorods[J]. ACS Appl. Mater. Interfaces, 2020,12(52):57732-57745.

    59. [59]

      Huang Y F, Sefah K, Bamrungsap S, Chang H T, Tan W H. Selective Photothermal Therapy for Mixed Cancer Cells Using Aptamer-Conjugated Nanorods[J]. Langmuir, 2008,24(20):11860-11865.

    60. [60]

      Choi J, Park Y, Choi E B, Kim H O, Kim D J, Hong Y C, Ryu S H, Lee J H, Suh J S, Yang J, Huh Y M, Haam S. Aptamer-Conjugated Gold Nanorod for Photothermal Ablation of Epidermal Growth Factor Receptor-Overexpressed Epithelial Cancer[J]. J. Biomed. Opt., 2014,19(5)051023.

    61. [61]

      Chandrasekaran R, Lee A S W, Yap L W, Jans D A, Wagstaff K M, Cheng W L. Tumor Cell-Specific Photothermal Killing by SELEX-Derived DNA Aptamer-Targeted Gold Nanorods[J]. Nanoscale, 2016,8(1):187-196.

    62. [62]

      Noh Y, Kim M J, Mun H, Jo E J, Lee H, Kim M G. Aptamer-Based Selective KB Cell Killing by the Photothermal Effect of Gold Nanorods[J]. J. Nanopart. Res., 2019,21(6)112.

    63. [63]

      Zheng L R, Zhang B Y, Chu H S, Cheng P, Li H Y, Huang K L, He X Y, Xu W T. Assembly and In Vitro Assessment of a Powerful Combination: Aptamer-Modified Exosomes Combined with Gold Nanorods for Effective Photothermal Therapy[J]. Nanotechnology, 2020,31(48)485101.

    64. [64]

      Wang J, Liang D W, Jin Q Q, Feng J, Tang X J. Bioorthogonal SERS Nanotags as a Precision Theranostic Platform for In Vivo SERS Imaging and Cancer Photothermal Therapy[J]. Bioconjugate Chem., 2020,31(2):182-193.

    65. [65]

      Liang H, Zhou Z W, Luo R J, Sang M M, Liu B W, Sun M J, Qu W, Feng F, Liu W Y. Tumor-Specific Activated Photodynamic Therapy with an Oxidation-Regulated Strategy for Enhancing Anti-tumor Efficacy[J]. Theranostics, 2018,8(18):5059-5071.

    66. [66]

      Lan G X, Ni K Y, Xu Z W, Veroneau S S, Song Y, Lin W B. Nanoscale Metal-Organic Framework Overcomes Hypoxia for Photodynamic Therapy Primed Cancer Immunotherapy[J]. J. Am. Chem. Soc., 2018,140(17):5670-5673.

    67. [67]

      Pan L M, Liu J A, Shi J L. Cancer Cell Nucleus-Targeting Nanocomposites for Advanced Tumor Therapeutics[J]. Chem. Soc. Rev., 2018,47(18):6930-6946.

    68. [68]

      Li X, Lee S, Yoon J. Supramolecular Photosensitizers Rejuvenate Photodynamic Therapy[J]. Chem. Soc. Rev., 2018,47(4):1174-1188.

    69. [69]

      Guo L, Niu G L, Zheng X L, Ge J C, Liu W M, Jia Q Y, Zhang P P, Zhang H Y, Wang P F. Single Near-Infrared Emissive Polymer Nanoparticles as Versatile Phototheranostics[J]. Adv. Sci., 2017,4(10)1700085.

    70. [70]

      Guo L, Ge J C, Liu Q, Jia Q Y, Zhang H Y, Liu W M, Niu G L, Liu S, Gong J R, Hackbarth S, Wang P F. Versatile Polymer Nanoparticles as Two-Photon-Triggered Photosensitizers for Simultaneous Cellular, Deep-Tissue Imaging, and Photodynamic Therapy[J]. Adv. Healthcare Mater., 2017,6(12)1601431.

    71. [71]

      Zhao S J, Niu G L, Wu F, Yan L, Zhang H Y, Zhao J F, Zeng L T, Lan M H. Lysosome-Targetable Polythiophene Nanoparticles for Two-Photon Excitation Photodynamic Therapy and Deep Tissue Imaging[J]. J. Mater. Chem. B, 2017,5(20):3651-3657.

    72. [72]

      Liu J J, Zhang Y W, Liu W, Zhang K X, Shi J J, Zhang Z Z. Tumor Antigen Mediated Conformational Changes of Nanoplatform for Activated Photodynamic Therapy[J]. Adv. Healthcare Mater., 2019,8(20)1900791.

    73. [73]

      Dai G, Choi C K K, Zhou Y, Bai Q, Xiao Y, Yang C, Choi C H J, Ng D K P. Immobilising Hairpin DNA-Conjugated Distyryl Boron Dipyrromethene on Gold@Polydopamine Core-Shell Nanorods for Microrna Detection and Microrna-Mediated Photodynamic Therapy[J]. Nanoscale, 2021,13(13):6499-6512.

    74. [74]

      Guo Y, Li S, Liu J, Yang G, Sun Z, Wan J. Double Functional Aptamer Switch Probes Based on Gold Nanorods for Intracellular ATP Detection and Targeted Drugs Transportation[J]. Sens. Actuators B, 2016,235(1):655-662.

    75. [75]

      Tsouris V, Joo M K, Kim S H, Kwon I C, Won Y Y. Nano Carriers that Enable Co-delivery of Chemotherapy and RNAi Agents for Treatment of Drug-Resistant Cancers[J]. Biotechnol. Adv., 2014,32(5):1037-1050.

    76. [76]

      Fan W P, Yung B, Huang P, Chen X Y. Nanotechnology for Multimodal Synergistic Cancer Therapy[J]. Chem. Rev., 2017,117(22):13566-13638.

    77. [77]

      Yang X, Li M, Liang J Y, Hou X Y, He X X, Wang K M. NIR-Controlled Treatment of Multidrug-Resistant Tumor Cells by Mesoporous Silica Capsules Containing Gold Nanorods and Doxorubicin[J]. ACS Appl. Mater. Interfaces, 2021,13(13):14894-14910.

    78. [78]

      He T, He J, Younis M R, Blum N T, Lei S, Zhang Y L, Huang P, Lin J. Dual-Stimuli-Responsive Nanotheranostics for Dual-Targeting Photothermal-Enhanced Chemotherapy of Tumor[J]. ACS Appl. Mater. Interfaces, 2021,13(19):22204-22212.

    79. [79]

      Kang H Z, Trondoli A C, Zhu G Z, Chen Y, Chang Y J, Liu H P, Huang Y F, Zhang X L, Tan W H. Near-Infrared Light-Responsive Core-Shell Nanogels for Targeted Drug Delivery[J]. ACS Nano, 2011,5(6):5094-5099.

    80. [80]

      Yang X J, Liu X, Liu Z, Pu F, Ren J S, Qu X G. Near-Infrared Light-Triggered, Targeted Drug Delivery to Cancer Cells by Aptamer Gated Nanovehicles[J]. Adv. Mater., 2012,24(21):2890-2895.

    81. [81]

      Kim A R, Shin S W, Cho S W, Lee J Y, Kim D I, Um S H. A Light-Driven Anti-Cancer Dual-Therapeutic Cassette Enhances Solid Tumour Regression[J]. Adv. Healthcare Mater., 2013,2(9):1252-1258.

    82. [82]

      Ju E G, Li Z H, Liu Z, Ren J S, Qu X G. Near-Infrared Light-Triggered Drug-Delivery Vehicle for Mitochondria-Targeted Chemo-Photothermal Therapy[J]. ACS Appl. Mater. Interfaces, 2014,6(6):4364-4370.

    83. [83]

      Wang X W, Gao W, Fan H H, Ding D, Lai X F, Zou Y X, Chen L, Chen Z, Tan W H. Simultaneous Tracking of Drug Molecules and Carriers Using Aptamer-Functionalized Fluorescent Superstable Gold Nanorod-Carbon Nanocapsules during Thermo-Chemotherapy[J]. Nanoscale, 2016,8(15):7942-7948.

    84. [84]

      Song L L, Jiang Q, Liu J B, Li N, Liu Q, Dai L R, Gao Y, Liu W L, Liu D S, Ding B Q. DNA Origami/Gold Nanorod Hybrid Nanostructures for the Circumvention of Drug Resistance[J]. Nanoscale, 2017,9(23):7750-7754.

    85. [85]

      Qiu L P, Chen T, Öçsoy I, Yasun E, Wu C C, Zhu G Z, You M X, Han D, Jiang J H, Yu R Q, Tan W H. A Cell-Targeted, Size-Photocontrollable, Nuclear-Uptake Nanodrug Delivery System for Drug-Resistant Cancer Therapy[J]. Nano Lett., 2015,15(1):457-463.

    86. [86]

      Wang Y T, Wang L, Guo L X, Yan M M, Feng L, Dong S L, Hao J C. Photo-Responsive Magnetic Mesoporous Silica Nanocomposites for Magnetic Targeted Cancer Therapy[J]. New J. Chem., 2019,43(12):4908-4918.

    87. [87]

      Choi J, Kim S Y. Photothermally Enhanced Photodynamic Therapy Based on Glutathione-Responsive Pheophorbide A-Conjugated Gold Nanorod Formulations for Cancer Theranostic Applications[J]. J. Ind. Eng. Chem., 2020,85:66-74.

    88. [88]

      Wang J, Zhu G Z, You M X, Song E, Shukoor M I, Zhang K, Altman M B, Chen Y, Zhu Z, Huang C Z, Tan W H. Assembly of Aptamer Switch Probes and Photosensitizer on Gold Nanorods for Targeted Photothermal and Photodynamic Cancer Therapy[J]. ACS Nano, 2012,6(6):5070-5077.

    89. [89]

      Wang J, You M X, Zhu G Z, Shukoor M I, Chen Z, Zhao Z L, Altman M B, Yuan Q, Zhu Z, Chen Y, Huang C Z, Tan W H. Photosensitizer-Gold Nanorod Composite for Targeted Multimodal Therapy[J]. Small, 2013,9(21):3678-3684.

    90. [90]

      Peng H Y, Le C, Wu J J, Li X F, Zhang H Q, Le X C. A Genome-Editing Nanomachine Constructed with a Clustered Regularly Interspaced Short Palindromic Repeats System and Activated by Near-Infrared Illumination[J]. ACS Nano, 2020,14(3):2817-2826.

    91. [91]

      Tang W T, Han L, Lu X H, Wang Z R, Liu F S, Li Y, Liu S B, Liu S L, Tian R, Liu J B, Ding B Q. A Nucleic Acid/Gold Nanorod-Based Nanoplatform for Targeted Gene Editing and Combined Tumor Therapy[J]. ACS Appl. Mater. Interfaces, 2021,13(18):20974-20981.

    92. [92]

      Bian W Q, Wang Y K, Pan Z X, Chen N P, Li X J, Wong W L, Liu X J, He Y, Zhang K, Lu Y J. Review of Functionalized Nanomaterials for Photothermal Therapy of Cancers[J]. ACS Appl. Nano Mater., 2021,83(4):11353-11385.

    93. [93]

      Yi Y, Wang H J, Wang X W, Liu Q L, Ye M, Tan W H. A Smart, Photocontrollable Drug Release Nanosystem for Multifunctional Synergistic Cancer Therapy[J]. ACS Appl. Mater. Interfaces, 2017,9(7):5847-5854.

    94. [94]

      Wang C B, Nie H, Li Y Q, Liu G Y, Wang X, Xing S J, Zhang L P, Chen X, Chen Y, Li Y. The Study of the Relation of DNA Repair Pathway Genes SNPs and the Sensitivity to Radiotherapy and Chemotherapy of NSCLC[J]. Sci. Rep., 2016,6(1)26526.

    95. [95]

      Yang X J, Li X L, Chen H Y, Xu J J. NIR-Activated Spatiotemporally Controllable Nanoagent for Achieving Synergistic Gene-Chemo-Photothermal Therapy in Tumor Ablation[J]. ACS Appl. Bio Mater., 2019,2(7):2994-3001.

    96. [96]

      Chen C M, Yang Z J, Tang X J. Chemical Modifications of Nucleic Acid Drugs and Their Delivery Systems for Gene-Based Therapy[J]. Med. Res. Rev., 2018,38(3):829-869.

  • 加载中
    1. [1]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    4. [4]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    5. [5]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    6. [6]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    7. [7]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    10. [10]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    11. [11]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    12. [12]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    13. [13]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    14. [14]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    15. [15]

      Meng Lin Heng Zhang Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    18. [18]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    19. [19]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    20. [20]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

Metrics
  • PDF Downloads(4)
  • Abstract views(1413)
  • HTML views(236)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return