Hydrogen Storage Capabilities of the Low-Lying Ca2B4 Clusters
- Corresponding author: Yu-Peng TANG, jctyp@163.com
Citation:
Yu-Peng TANG, Yan-Fei ZHAO, Hai-Ying YANG, Nan LI. Hydrogen Storage Capabilities of the Low-Lying Ca2B4 Clusters[J]. Chinese Journal of Inorganic Chemistry,
;2022, 38(7): 1391-1401.
doi:
10.11862/CJIC.2022.118
Schlapbach L, Züttel A. Hydrogen-Storage Materials for Mobile Applications[J]. Nature, 2001,414:353-358. doi: 10.1038/35104634
Sartbaeva A, Kuznetsov V L, Wells S A, Edwards P P. Hydrogen Nexus in a Sustainable Energy Future[J]. Energy Environ. Sci., 2008,1(1):79-85. doi: 10.1039/b810104n
Züttel A, Remhof A, Borgschulte A, Friedrichs O. Hydrogen: The Future Energy Carrier[J]. Philos. Trans. R. Soc. London Ser. A, 2010,368(1923):3329-3342.
Züttel A, Wenger P, Sudan P, Mauron P, Orimo S I. Hydrogen Density in Nanostructured Carbon, Metals and Complex Materials[J]. Mater. Sci. Eng. B, 2004,108(1/2):9-18.
Graetz J. New Approaches to Hydrogen Storage[J]. Chem. Soc. Rev., 2009,38:73-82. doi: 10.1039/B718842K
Jena P. Materials for Hydrogen Storage: Past, Present, and Future[J]. J. Phys. Chem. Lett., 2011,2(3):206-211. doi: 10.1021/jz1015372
DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles
Orimo S I, Nakamori Y, Eliseo J R, Züttel A, Jensen C M. Complex Hydrides for Hydrogen Storage[J]. Chem. Rev., 2007,107(10):4111-4132. doi: 10.1021/cr0501846
Grochala W, Edwards P P. Thermal Decomposition of the Non-interstitial Hydrides for Storage and Production of Hydrogen[J]. Chem. Rev., 2004,104(3):1283-1316. doi: 10.1021/cr030691s
Yürüm Y, Taralp A, Veziroglu T N. Storage of Hydrogen in Nanostructured Carbon materials[J]. Int. J. Hydrogen Energy, 2009,34(9):3784-3798. doi: 10.1016/j.ijhydene.2009.03.001
Yildirim T, Iñiguez J, Ciraci S. Molecular and Dissociative Adsorption of Multiple Hydrogen Molecules on Transition Metal Decorated C60[J]. Phys. Rev. B, 2005,72(15):153403-153406. doi: 10.1103/PhysRevB.72.153403
Sun Q, Wang Q, Jena P, Kawazoe Y. Clustering of Ti on a C60 Surface and Its Effect on Hydrogen Storage[J]. J. Am. Chem. Soc., 2005,127(42):14582-14583. doi: 10.1021/ja0550125
Yildirim T, Ciraci S. Titanium-Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium[J]. Phys. Rev. Lett., 2005,94(17):175501-175503. doi: 10.1103/PhysRevLett.94.175501
Sun Q, Jena P, Wang Q, Marquez M. First-Principles Study of Hydrogen Storage on Li12C60[J]. J. Am. Chem. Soc., 2006,128(30):9741-9745. doi: 10.1021/ja058330c
Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z. Calcium as the Superior Coating Metal in Functionalization of Carbon Fullerenes for High-Capacity Hydrogen Storage[J]. Phys. Rev. Lett., 2008,100(20):206806-206809. doi: 10.1103/PhysRevLett.100.206806
Zhang Y F, Cheng X L. Hydrogen Storage Property of Alkali and Alkaline-Earth Metal Atom Decorated C 24 fullerene: A DFT Study[J]. Chem. Phys., 2018,505:26-33. doi: 10.1016/j.chemphys.2018.03.010
Ren H J, Cui C X, Li X J, Liu Y J. A DFT Study of the Hydrogen Storage Potentials and Properties of Na- and Li-Doped Fullerene[J]. Int. J. Hydrogen Energy, 2017,42(1):312-321. doi: 10.1016/j.ijhydene.2016.10.151
Chavéz E L, Castañeda Y P, Quiroz A G, Alvarado F C, Góngora J D, González L J. Ti-Decorated C120 Nanotorus: A New Molecular Structure for Hydrogen Storage[J]. Int. J. Hydrogen Energy, 2017,42(51):30237-30241. doi: 10.1016/j.ijhydene.2017.08.095
Ma L J, Han M, Wang J, Jia J F, Wu H S. Oligomerization of Vanadium-Acethlene Systems and Its Effect on Hydrogen Storage[J]. Int. J. Hydrogen Energy, 2017,42(20):14188-14198. doi: 10.1016/j.ijhydene.2017.04.114
Tavhare P, Kalamse V, Krishna R, Titus E, Chaudhari A. Hydrogen Adsorption on Ce-Ethylene Complex Using Quantum Chemical Methods[J]. Int. J. Hydrogen Energy, 2016,41(27):11730-11735. doi: 10.1016/j.ijhydene.2015.11.172
Ma L J, Jia J F, Wu H S. Computational Investigation of Hydrogen Storage on Scandium-Acetylene System[J]. Int. J. Hydrogen Energy, 2015,40(1):420-428. doi: 10.1016/j.ijhydene.2014.10.136
Kalamse V, Wadnerkar N, Chaudhari A. Hydrogen Storage in C2H4V and C2H4V+Organometallic Compounds[J]. J. Phys. Chem. C, 2010,114(10):4704-4709. doi: 10.1021/jp910614n
Durgun E, Ciraci S, Zhou W, Yildirim T. Transition-Metal-Ethylene Complexes as High-Capacity Hydrogen-Storage Media[J]. Phys. Rev. Lett., 2006,97(22):226102-226105. doi: 10.1103/PhysRevLett.97.226102
Ma L J, Jia J F, Wu H S, Ren Y. Ti-η2-(C2H2) and HC≡C-TiH as High Capacity Hydrogen Storage Media[J]. Int. J. Hydrogen Energy, 2013,38(36):16185-16192. doi: 10.1016/j.ijhydene.2013.09.151
Kalamse V, Wadnerkar N, Deshmukh A, Chaudhari A. C2H2M (M=Ti, Li) Complex: A Possible Hydrogen Storage Material[J]. Int. J. Hydrogen Energy, 2012,37(4):3727-3732. doi: 10.1016/j.ijhydene.2011.05.061
Kalamse V, Wadnerkar N, Deshmukh A, Chaudhari A. Interaction of Molecular Hydrogen with Ni Doped Ethylene and Acetylene Complex[J]. Int. J. Hydrogen Energy, 2012,37(6):5114-5121. doi: 10.1016/j.ijhydene.2011.12.100
Chakraborty A, Giri S, Chattaraj P K. Analyzing the Efficiency of Mn-(C2H4)(M=Sc, Ti, Fe, Ni; n=1, 2) Complexes as Effective Hydrogen Storage Materials[J]. Struct. Chem., 2011,22(4):823-837. doi: 10.1007/s11224-011-9754-7
Phillips A B, Shivaram B S. High Capacity Hydrogen Absorption in Transition-Metal Ethylene Complexes: Consequences of Nanoclustering[J]. Nanotechnology, 2009,20(20):204020-204024. doi: 10.1088/0957-4484/20/20/204020
Du J, Sun X, Jiang G, Zhang C. The Hydrogen Storage on Heptacoordinate Carbon motif CTi72+[J]. Int. J. Hydrogen Energy, 2016,41(26):11301-11307. doi: 10.1016/j.ijhydene.2016.05.058
Venkataramanan N S, Sahara R, Mizuseki H, Kawazoe Y. Titanium-Doped Nickel Clusters TiNin (n=1-12): Geometry, Electronic, Magnetic, and Hydrogen Adsorption Properties[J]. J. Phys. Chem. A, 2010,114(15):5049-5057. doi: 10.1021/jp100459c
Du J G, Sun X Y, Jiang G, Zhang C. Hydrogen Capability of Bimetallic Boron Cycles: A DFT and Ab Initio MD Study[J]. Int. J. Hydrogen Energy, 2019,44(13):6763-6772. doi: 10.1016/j.ijhydene.2019.01.195
Guo C, Wang C. A Theoretical Study on Cage-like Clusters (C12-Ti6 and C12-Ti62+) for Dihydrogen Storage[J]. Int. J. Hydrogen Energy, 2019,44(21):10763-10769. doi: 10.1016/j.ijhydene.2019.02.212
Sathe R Y, Bae H, Lee H, Kumar T J D. Hydrogen Storage Capacity of Low-Lying Isomer of C24 Functionalized with Ti[J]. Int. J. Hydrogen Energy, 2020,45(16):9936-9945. doi: 10.1016/j.ijhydene.2020.02.016
MA L J, WANG J F, JIA J F, WU H S. Hydrogen Storage Properties of B12Sc4 and B12Ti4 Clusters[J]. Acta Phys.-Chim. Sin., 2012,28(8):1854-1860. doi: 10.3866/PKU.WHXB201205151
Tai T B, Nguyen M T. A Three-Dimensional Aromatic B6Li8 Complex as a High Capacity Storage Material[J]. Chem. Commum., 2013,49(9):913-915. doi: 10.1039/C2CC38038B
Bai H, Bai B, Zhang L, Huang W, Mu Y W, Zhai H J, Li S D. Lithium-Decorated Borospherene B40: A Promising Hydrogen Storage Medium[J]. Sci. Rep., 2016,6:35518-35527. doi: 10.1038/srep35518
Dong H, Hou T, Lee S T, Li Y. New Ti-Decorated B40 Fullerene as a Promising Hydrogen Storage Material[J]. Sci. Rep., 2015,5:9952-9959. doi: 10.1038/srep09952
Tang C M, Zhang X. The Hydrogen Storage Capacity of Sc Atoms Decorated Porous Boron Fullerene B40: A DFT Study[J]. Int. J. Hydrogen Energy, 2016,41(38):16992-16999. doi: 10.1016/j.ijhydene.2016.07.118
Du J G, Sun X Y, Zhang L, Zhang C Y, Jiang G. Hydrogen Storage of Li4&B36 Cluster[J]. Sci. Rep., 2018,8:1940-1945. doi: 10.1038/s41598-018-20452-8
Si L, Tang C M. The Reversible Hydrogen Storage Abilities of Metal Na (Li, K, Ca, Mg, Sc, Ti, Y) Decorated All-Boron Cage B28[J]. Int. J. Hydrogen Energy, 2017,42(26):16611-16619. doi: 10.1016/j.ijhydene.2017.05.181
Lu Q L, Hang S G, Li Y D, Wan J G, Luo Q Q. Alkali and Alkaline-Earth Atom-Decorated B38 Fullerenes and Their Potential for Hydrogen Storage[J]. Int. J. Hydrogen Energy, 2015,40(38):13022-13028. doi: 10.1016/j.ijhydene.2015.08.008
Wang Y J, Xu L, Qiao L H, Ren J, Hou X R, Miao C Q. Ultra-High Capacity Hydrogen Storage of B6Be2 and B8Be2 Clusters[J]. Int. J. Hydrogen Energy, 2020,45(23):12932-12939. doi: 10.1016/j.ijhydene.2020.02.209
Guo C, Wang C. Computational Investigation of Hydrogen Storage on B5V3[J]. Mol. Phys., 2018,116(10):1290-1296. doi: 10.1080/00268976.2018.1423710
Ray S S, Sahoo S R, Sahu S. Hydrogen Storage in Scandium Doped Small Boron Clusters (BnSc2, n=3-10): A Density Functional Study[J]. Int. J. Hydrogen Energy, 2019,44(12):6019-6030. doi: 10.1016/j.ijhydene.2018.12.109
Huang H, Wu B, Gao Q, Li P, Yang X. Structural, Electronic and Spectral Properties Referring to Hydrogen Storage Capacity in Binary Alloy ScBn (n=1-12) Clusters[J]. Int. J. Hydrogen Energy, 2017,42(33):21086-21095. doi: 10.1016/j.ijhydene.2017.06.233
Guo C, Wang C. Remarkable Hydrogen Storage on Sc2B42+Cluster: A Computational Study[J]. Vacuum, 2018,149:134-139. doi: 10.1016/j.vacuum.2017.12.031
Guo C, Wang C. The Theoretical Research of Hydrogen Storage Capacities of Cu3Bx (x=1-4) Compounds Under Ambient Conditions[J]. Int. J. Hydrogen Energy, 2020,45(46):24947-24957. doi: 10.1016/j.ijhydene.2020.06.089
Du J G, Jiang G. An Aromatic Ca2B8 Complex for Reversible Hydrogen Storage[J]. Int. J. Hydrogen Energy, 2021,46(36):19023-19030. doi: 10.1016/j.ijhydene.2021.03.060
Lu T. Molclus Program, Version 1. 9. 9. 2, http://www.keinsci.com/research/molclus.html
Adamo C, Barone V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model[J]. J. Chem. Phys., 1999,110(13):6158-6170. doi: 10.1063/1.478522
Krishnan R, Binkley J S, Seeger R, Pople J A. Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions[J]. J. Chem. Phys., 1980,72(1):650-654. doi: 10.1063/1.438955
Clark T, Chandrasekhar J, Spitznagel G W, Schleyer P V. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. Ⅲ.* the 3-21+G Basis Set for First-Row Elements, Li-F[J]. J. Comput. Chem., 1983,4(3):294-301. doi: 10.1002/jcc.540040303
Blaudeau J P, McGrath M P, Curtiss L A, Radom L. Extension of Gaussian-2(G2) Theory to Molecules Containing Third-Row Atoms K and Ca[J]. J. Chem. Phys., 1997,107(13):5016-5021. doi: 10.1063/1.474865
Wang Y J, Feng L Y, Guo J C, Zhai H J. Dynamic Mg2B8 Cluster: A Nanoscale Compass[J]. Chem. Asian J., 2017,12(22):2899-2903. doi: 10.1002/asia.201701310
Wang Y J, Guo M M, Wang G L, Miao C Q, Zhang N, Xue T D. The Structure and Chemical Bonding in Inverse Sandwich B6Ca2 and B8Ca2 Clusters: Conflicting Aromaticity vs[J]. Double Aromaticity. Phys. Chem. Chem. Phys., 2020,22(36):20362-20367. doi: 10.1039/D0CP03703F
Chai J D, Gordon M H. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections[J]. Phys. Chem. Chem. Phys., 2008,10(44):6615-6620. doi: 10.1039/b810189b
Boys S F, Bernardi F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors[J]. Mol. Phys., 1970,19(4):553-566. doi: 10.1080/00268977000101561
Pople J A, Head-Gordon M. Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies[J]. J. Chem. Phys., 1987,87(10):5968-5975. doi: 10.1063/1.453520
Hoffmann R, Schleyer P V R, Schaefer Ⅲ H F. Predicting Molecules-More Realism, Please![J]. Angew. Chem. Int. Ed., 2008,47(38):7164-7167. doi: 10.1002/anie.200801206
Lu T, Chen F W. Multiwfn: A Multifunctional Wavefunction Analyzer[J]. J. Comput. Chem., 2012,33(5):580-592. doi: 10.1002/jcc.22885
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Tianze Wang , Junyi Ren , Dongxiang Zhang , Huan Wang , Jianjun Du , Xin-Dong Jiang , Guiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Shuangliang Xie , Yuyue Chen , Qing He , Liang Chen , Jikun Yang , Shiqing Deng , Yimei Zhu , He Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Lingyun Shen , Shenxiang Yin , Qingshu Zheng , Zheming Sun , Wei Wang , Tao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580
Meng Shan , Yongmei Yu , Mengli Sun , Shuping Yang , Mengqi Wang , Bo Zhu , Junbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781
Kang Wang , Qinglin Zhou , Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325
Hangwen Zheng , Ziqian Wang , HuiJie Zhang , Jing Lei , Rihui Li , Jian Yang , Haiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245
Xixian Sun , Shengke Li , Ruibing Wang , Leyong Wang . Functional macrocyclic arenes with active binding sites inside cavity for biomimetic molecular recognition. Chinese Chemical Letters, 2025, 36(4): 110806-. doi: 10.1016/j.cclet.2024.110806
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
Yan-Jiang Li , Shu-Lei Chou , Yao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389
Huanyu Liu , Gang Yu , Ruoyao Guo , Hao Qi , Jiayin Zheng , Tong Jin , Zifeng Zhao , Zuqiang Bian , Zhiwei Liu . Direct identification of energy transfer mechanism in CeⅢ-MnⅡ system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296
Xianping Du , Ying Huang , Chen Chen , Zhenhe Feng , Meng Zong . Encapsulating Si particles in multiple carbon shells with pore-rich for constructing free-standing anodes of lithium storage. Chinese Chemical Letters, 2024, 35(12): 109990-. doi: 10.1016/j.cclet.2024.109990
Yufei Liu , Liang Xiong , Bingyang Gao , Qingyun Shi , Ying Wang , Zhiya Han , Zhenhua Zhang , Zhaowei Ma , Limin Wang , Yong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932
Relative energies (ΔE) are given in eV at CCSD(T)/6-311+G(d)//PBE0/6-311+G(d) level; Capital letters S and T in parenthesis denote the singlet state and the triplet state, respectively; Green spheres represent Ca atoms and the pink spheres represent B atoms
Inset: extracted snapshots at different simulation times (50, 2 500, and 5 000 fs); Green spheres represent Ca atoms and pink spheres represent B atoms
Cyan spheres represent Ca atoms and the pink spheres represent B atoms
Gray spheres represent H atoms