Structure-Activity Relationship and Reaction Characteristics of Propene Aromatization Catalyzed by ZSM-5
- Corresponding author: Zhong LI, lizhong@tyut.edu.cn Ting-Jun FU, futingjun@tyut.edu.cn
Citation:
Kun REN, Liang-Liang ZHANG, Zhong LI, Ting-Jun FU. Structure-Activity Relationship and Reaction Characteristics of Propene Aromatization Catalyzed by ZSM-5[J]. Chinese Journal of Inorganic Chemistry,
;2022, 38(6): 1090-1102.
doi:
10.11862/CJIC.2022.115
Ma H, Sun Y, Yu J P, Qiao J R, Jin W Y, Kang G J, Wang Y L, Ma J. Theoretical Study on the Influence of ZSM-5 Zeolite with Different Structures for Methanol to Aromatics[J]. Microporous Mesoporous Mater., 2019,294109838.
Niziolek A M, Onel O, Guzman Y A, Floudas C A. Biomass-Based Production of Benzene, Toluene, and Xylenes via Methanol: Process Synthesis and Deterministic Global Optimization[J]. Energy Fuels, 2016,30(6):4970-4098. doi: 10.1021/acs.energyfuels.6b00619
GUO S J, WANG S, LUO Y Y, LUO L, DONG M, QIN Z F, FAN W B, WANG J G. Effect of H-ZSM-5 Zeolite Morphology on the Performance of Bifunctional ZnCr2O4/H-ZSM-5 Catalysts in the Direct Conversion of Syngas into Aromatics[J]. Journal of Fuel Chemistry and Technology, 2020,48(8):970-979. doi: 10.3969/j.issn.0253-2409.2020.08.009
ZHAO Y L. Study on ZSM-5 Modified by Zinc for Methanol to Aromatics. Dalian: Dalian University of Technology, 2020: 1-20
CHEN S S, ZHANG G S, HUO F, ZHANG J P. Market and Technology Development Trends of Coal-Based Bulk Chemicals[J]. Chemical Industry and Engineering Progress, 2020,39(12):5009-5020.
CHENG C H, XI N, LI H, YANG Y, DONG P, LI G X. Research Progress on the Reaction Mechanism of Methanol to Hydrocarbons[J]. Fine Chemicals, 2020,37(2):231-241.
Niu X J, Gao J, Wang K, Miao Q, Dong M, Wang G F, Fan W B, Qin Z F, Wang J G. Influence of Crystal Size on the Catalytic Performance of H-ZSM-5 and Zn/H-ZSM-5 in the Conversion of Methanol to Aromatics[J]. Fuel Process. Technol., 2017,157:99-107. doi: 10.1016/j.fuproc.2016.12.006
ZHAO Y L, LIU M, LI J J, ZHANG T T, GUO X W. Synthesis of Zn-ZSM-5 Zeolites of Different Thicknesses by Seed-Oriented Strategy for Methanol to Aromatics[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021,37(2):269-280. doi: 10.3969/j.issn.1001-8719.2021.02.004
Xing L Y, Wei Z H, Wen Z H, Zhu X D. Catalytic Study for Methanol Aromatization over Hierarchical ZSM-5 Zeolite Synthesized by Kaolin[J]. Pet. Sci. Technol., 2017,35(24):2235-2240. doi: 10.1080/10916466.2017.1381712
Qi R Y, Fu T J, Wan W L, Li Z. Pore Fabrication of Nano-ZSM-5 Zeolite by Internal Desilication and Its Influence on the Methanol to Hydrocarbon Reaction[J]. Fuel Process. Technol., 2017,155:191-199. doi: 10.1016/j.fuproc.2016.05.046
Gao Y, Zheng B H, Wu G, Ma F W, Liu C T. Effect of the Si/Al Ratio on the Performance of Hierarchical ZSM-5 Zeolites for Methanol Aromatization[J]. RSC Adv., 2016,6(87):83581-83588. doi: 10.1039/C6RA17084F
Su X F, Zhang K, Snatenkova Y, Matieva Z, Bai X F, Kolesnichenko N, Wu W. High-Efficiency Nano [Zn, Al]ZSM-5 Bifunctional Catalysts for Dimethyl ether Conversion to Isoparaffin-Rich Gasoline[J]. Fuel Process. Technol., 2020,198106242. doi: 10.1016/j.fuproc.2019.106242
Bi Y, Wang Y L, Chen X, Yu Z X, Xu L. Methanol Aromatization over HZSM-5 Catalysts Modified with Different Zinc Salts[J]. Chin. J. Catal., 2014,35(10):1740-1751. doi: 10.1016/S1872-2067(14)60145-5
Liu M, Cui T, Guo X W, Li J J, Song C S. Stable Zn@ZSM-5 Catalyst via a Dry Gel Conversion Process for Methanol-to-Aromatics Reaction[J]. Microporous Mesoporous Mater., 2021,312110696. doi: 10.1016/j.micromeso.2020.110696
Fu T J, Shao J, Li Z. Catalytic Synergy between the Low Si/Al Ratio Zn/ZSM-5 and High Si/Al Ratio HZSM-5 for High-Performance Methanol Conversion to Aromatics[J]. Appl. Catal. B, 2021,291120098. doi: 10.1016/j.apcatb.2021.120098
Shao J, Fu T J, Li Z. The Selective and Stable Synthesis of Aromatics from Methanol via Two-Step Route Using Light Alkenes as Intermediates[J]. Fuel, 2020,280118609. doi: 10.1016/j.fuel.2020.118609
XIN M D, XING E H, OUYANG Y, XU G T, LUO Y B, SHU X T. Influence of Status of Zn Species in Zn/ZSM-5 on Its Catalytic Performance[J]. China Petroleum Processing Petrochemical Technology, 2019,50(12):42-49. doi: 10.3969/j.issn.1005-2399.2019.12.011
Pan T, Wu Z J, Zhou K Y. In Situ Incorporation of Zn into Hierarchical ZSM-5 Zeolites for Olefin Hydroisomerization[J]. Ind. Eng. Chem. Res., 2020,59(27):12371-12380. doi: 10.1021/acs.iecr.0c01506
Wang N, Hou Y L, Sun W J, Cai D L, Chen Z H, Liu L M, Ge B H, Hu L, Qian W Z, Wei F. Modulation of b-Axis Thickness within MFI Zeolite: Correlation with Variation of Product Diffusion and Coke Distribution in the Methanol-to-Hydrocarbons Conversion[J]. Appl. Catal. B, 2019,243:721-733. doi: 10.1016/j.apcatb.2018.11.023
Zhang Y, Wu S D, Xu X, Jiang H Q. Ethane Aromatization and Evolution of Carbon Deposits over Nanosized and Microsized Zn/ZSM-5 Catalysts[J]. Catal. Sci. Technol., 2020,10(3):835-843. doi: 10.1039/C9CY01903K
Su X F, Zan W, Bai X F, Wang G L, Wu W. Synthesis of Microscale and Nanoscale ZSM-5 Zeolites: Effect of Particle Size and Acidity of Zn Modified ZSM-5 Zeolites on Aromatization Performance[J]. Catal. Sci. Technol., 2017,7:1943-1952. doi: 10.1039/C7CY00435D
Wang K, Dong M, Niu X J, Li J F, Qin Z F, Fan W B, Wang J G. Highly Active and Stable Zn/ZSM-5 Zeolite Catalyst for the Conversion of Methanol to Aromatics: Effect of Support Morphology[J]. Catal. Sci. Technol, 2018,8(21):5646-5656. doi: 10.1039/C8CY01734D
Tamiyakul S, Sooknoi T, Lobban L L, Jongpatiwut S. Generation of Reductive Zn Species over Zn/HZSM-5 Catalysts for n-Pentane Aromatization[J]. Appl. Catal. B, 2016,525(5):190-196.
Wan Z J, Wu W, Li G, Wang C F, Yang H, Zhang D K. Effect of SiO2/Al2O3 Ratio on the Performance of Nanocrystal ZSM-5 Zeolite Catalysts in Methanol to Gasoline Conversion[J]. Appl. Catal. A, 2016,523:312-320. doi: 10.1016/j.apcata.2016.05.032
Qiao J, Wang J P, Frenkel A I, Teng J W, Chen X Q, Xiao J X, Zhang T Z, Wang Z D, Yuan Z Q, Yang W M. Methanol to Aromatics: Isolated Zinc Phosphate Groups on HZSM-5 Zeolite Enhance BTX Selectivity and Catalytic Stability[J]. RSC Adv., 2020,105961. doi: 10.1039/C9RA09657D
Emeis C A. Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts[J]. J. Catal., 1993,141(2):347-354. doi: 10.1006/jcat.1993.1145
Ma T, Zhang L M, Song Y, Shang Y S, Zhai Y L, Gong Y J. A Comparative Synthesis of ZSM-5 with Ethanol or TPABr Template: Distinction of Brønsted/Lewis Acidity Ratio and Its Impact on n-Hexane Cracking[J]. Catal. Sci. Technol., 2018,8(7):1923-1935. doi: 10.1039/C7CY02418E
Liu J X, He N, Zhou W, Shu M, Lin L, Wang J L, Si R, Xiong G, Xin Q, Guo H C. Operando Dual Beam FTIR Spectroscopy Unravels the Promotional Effect of Zn on HZSM-5 in iso-Butane Aromatization[J]. Catal. Sci. Technol., 2019,9(7):1609-1620. doi: 10.1039/C9CY00136K
ZHANG J G, QIAN W Z, TANG X P, SHEN K, WANG T, HUANG X F, WEI F. Influence of Catalyst Acidity on Dealkylation, Isomerization and Alkylation in MTA Process[J]. Acta. Phys-Chim. Sin., 2013,29(6):1281-1288. doi: 10.3866/PKU.WHXB201304101
CHEN Z P, XU J, BAO X J. Studies on the Reaction Mechanism of Light Olefin Isomerization and Aromatization[J]. Chemical Industry and Engineering Progress, 2015,34(3):617-623.
Niu X J, Gao J, Miao Q, Dong M, Wang G F, Fan W B, Qin Z F, Wang J G. Influence of Preparation Method on the Performance of Zn-Containing HZSM-5 Catalysts in Methanol-to-Aromatics[J]. Microporous Mesoporous Mater., 2014,197:252-261. doi: 10.1016/j.micromeso.2014.06.027
Fu T, Guo Y H, Shao J, Ma Q, Li Z. Precisely Regulating Acid Density and Types to Promote the Stable Two-Step Conversion of Methanol to Aromatics via Light Hydrocarbons[J]. Microporous Mesoporous Mater., 2021,320111103. doi: 10.1016/j.micromeso.2021.111103
Wang N, Hou Y L, Sun W J, Cai D L, Chen Z H, Liu L M, Ge B H, Hu L, Qian W Z, Wei F. Modulation of b-Axis Thickness within MFI Zeolite: Correlation with Variation of Product Diffusion and Coke Distribution in the Methanol-to-Hydrocarbons Conversion[J]. Appl. Catal. B, 2019,243:721-733. doi: 10.1016/j.apcatb.2018.11.023
Hawkins A P, Zachariou A, Parker S F, Collier P, Howe R F, Lennon D. Studies of Propene Conversion over H-ZSM-5 Demonstrate the Importance of Propene as an Intermediate in Methanol-to-Hydrocarbons Chemistry[J]. Catal. Sci. Technol., 2021,11:2924-2938. doi: 10.1039/D1CY00048A
Tabor E, Bernauer M, Wichterlová B, Dedecek J. Enhancement of Propene Oligomerization and Aromatization by Proximate Protons in Zeolites; FTIR Study of the Reaction Pathway in ZSM-5[J]. Catal. Sci. Technol., 2019,9:4262-4275. doi: 10.1039/C9CY00929A
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
(a) Propene conversion and liquid hydrocarbon yield; (b) Selectivity of all aromatics (A) and BTX; (c) Selectivity of benzene (B), toluene (T), and xylene (X); (d) Selectivity of light hydrocarbons (C20: ethane, C30: propane, C40: butane, C2-4=: C2-4 olefins)
(a) Propene conversion and liquid hydrocarbon yield; (b) Selectivity for A and BTX; (c) Selectivity of B, T, and X; (d) Selectivity of light hydrocarbons