Citation: Kun REN, Liang-Liang ZHANG, Zhong LI, Ting-Jun FU. Structure-Activity Relationship and Reaction Characteristics of Propene Aromatization Catalyzed by ZSM-5[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 1090-1102. doi: 10.11862/CJIC.2022.115 shu

Structure-Activity Relationship and Reaction Characteristics of Propene Aromatization Catalyzed by ZSM-5

Figures(11)

  • Aromatization of light olefins in methanol to aromatics via a two-step route showed better catalytic stability. To analyze the intrinsic mechanism, a series of ZSM-5 catalysts with different SiO2/Al2O3 ratios and Zn modified were prepared. Then propene aromatization, as the model reaction, was performed to analyze the effects of acidity on aromatization of light olefins and explore the reaction mechanism. The results illustrated that the increased acid density was in favor of the hydrogen transfer process, resulting in an increase of aromatics selectivity from 31.0% to 34.4% with the SiO2/Al2O3 ratio decreased from 150 to 75. Meanwhile, an increase in acid density will cause more propene to directly participate in the hydrogen transfer reaction to produce propane which was enhanced from 28.2% to 36.0%. Further introducing Zn could transform some Brønsted acid sites into Zn-Lewis acid sites, the aromatics selectivity was further significantly increased to 62.4% with the enhancement of the alkenes dehydrogenation aromatization process. Compared with direct methanol aromatization, propene aromatization had a less deep alkylation process, which not only increased the aromatics selectivity, but also inhibited the formation of insoluble coke, and improved the catalytic stability. These results suggested that the pre-conversion of methanol in methanol to light olefins was an important reason for the high catalytic stability of two-step methanol conversions, which inhibited the deep alkylation of aromatics in the subsequent aromatization process.
  • 加载中
    1. [1]

      Ma H, Sun Y, Yu J P, Qiao J R, Jin W Y, Kang G J, Wang Y L, Ma J. Theoretical Study on the Influence of ZSM-5 Zeolite with Different Structures for Methanol to Aromatics[J]. Microporous Mesoporous Mater., 2019,294109838.

    2. [2]

      Niziolek A M, Onel O, Guzman Y A, Floudas C A. Biomass-Based Production of Benzene, Toluene, and Xylenes via Methanol: Process Synthesis and Deterministic Global Optimization[J]. Energy Fuels, 2016,30(6):4970-4098. doi: 10.1021/acs.energyfuels.6b00619

    3. [3]

      GUO S J, WANG S, LUO Y Y, LUO L, DONG M, QIN Z F, FAN W B, WANG J G. Effect of H-ZSM-5 Zeolite Morphology on the Performance of Bifunctional ZnCr2O4/H-ZSM-5 Catalysts in the Direct Conversion of Syngas into Aromatics[J]. Journal of Fuel Chemistry and Technology, 2020,48(8):970-979. doi: 10.3969/j.issn.0253-2409.2020.08.009

    4. [4]

      ZHAO Y L. Study on ZSM-5 Modified by Zinc for Methanol to Aromatics. Dalian: Dalian University of Technology, 2020: 1-20

    5. [5]

      CHEN S S, ZHANG G S, HUO F, ZHANG J P. Market and Technology Development Trends of Coal-Based Bulk Chemicals[J]. Chemical Industry and Engineering Progress, 2020,39(12):5009-5020.  

    6. [6]

      CHENG C H, XI N, LI H, YANG Y, DONG P, LI G X. Research Progress on the Reaction Mechanism of Methanol to Hydrocarbons[J]. Fine Chemicals, 2020,37(2):231-241.  

    7. [7]

      Niu X J, Gao J, Wang K, Miao Q, Dong M, Wang G F, Fan W B, Qin Z F, Wang J G. Influence of Crystal Size on the Catalytic Performance of H-ZSM-5 and Zn/H-ZSM-5 in the Conversion of Methanol to Aromatics[J]. Fuel Process. Technol., 2017,157:99-107. doi: 10.1016/j.fuproc.2016.12.006

    8. [8]

      ZHAO Y L, LIU M, LI J J, ZHANG T T, GUO X W. Synthesis of Zn-ZSM-5 Zeolites of Different Thicknesses by Seed-Oriented Strategy for Methanol to Aromatics[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021,37(2):269-280. doi: 10.3969/j.issn.1001-8719.2021.02.004

    9. [9]

      Xing L Y, Wei Z H, Wen Z H, Zhu X D. Catalytic Study for Methanol Aromatization over Hierarchical ZSM-5 Zeolite Synthesized by Kaolin[J]. Pet. Sci. Technol., 2017,35(24):2235-2240. doi: 10.1080/10916466.2017.1381712

    10. [10]

      Qi R Y, Fu T J, Wan W L, Li Z. Pore Fabrication of Nano-ZSM-5 Zeolite by Internal Desilication and Its Influence on the Methanol to Hydrocarbon Reaction[J]. Fuel Process. Technol., 2017,155:191-199. doi: 10.1016/j.fuproc.2016.05.046

    11. [11]

      Gao Y, Zheng B H, Wu G, Ma F W, Liu C T. Effect of the Si/Al Ratio on the Performance of Hierarchical ZSM-5 Zeolites for Methanol Aromatization[J]. RSC Adv., 2016,6(87):83581-83588. doi: 10.1039/C6RA17084F

    12. [12]

      Su X F, Zhang K, Snatenkova Y, Matieva Z, Bai X F, Kolesnichenko N, Wu W. High-Efficiency Nano [Zn, Al]ZSM-5 Bifunctional Catalysts for Dimethyl ether Conversion to Isoparaffin-Rich Gasoline[J]. Fuel Process. Technol., 2020,198106242. doi: 10.1016/j.fuproc.2019.106242

    13. [13]

      Bi Y, Wang Y L, Chen X, Yu Z X, Xu L. Methanol Aromatization over HZSM-5 Catalysts Modified with Different Zinc Salts[J]. Chin. J. Catal., 2014,35(10):1740-1751. doi: 10.1016/S1872-2067(14)60145-5

    14. [14]

      Liu M, Cui T, Guo X W, Li J J, Song C S. Stable Zn@ZSM-5 Catalyst via a Dry Gel Conversion Process for Methanol-to-Aromatics Reaction[J]. Microporous Mesoporous Mater., 2021,312110696. doi: 10.1016/j.micromeso.2020.110696

    15. [15]

      Fu T J, Shao J, Li Z. Catalytic Synergy between the Low Si/Al Ratio Zn/ZSM-5 and High Si/Al Ratio HZSM-5 for High-Performance Methanol Conversion to Aromatics[J]. Appl. Catal. B, 2021,291120098. doi: 10.1016/j.apcatb.2021.120098

    16. [16]

      Shao J, Fu T J, Li Z. The Selective and Stable Synthesis of Aromatics from Methanol via Two-Step Route Using Light Alkenes as Intermediates[J]. Fuel, 2020,280118609. doi: 10.1016/j.fuel.2020.118609

    17. [17]

      XIN M D, XING E H, OUYANG Y, XU G T, LUO Y B, SHU X T. Influence of Status of Zn Species in Zn/ZSM-5 on Its Catalytic Performance[J]. China Petroleum Processing Petrochemical Technology, 2019,50(12):42-49. doi: 10.3969/j.issn.1005-2399.2019.12.011

    18. [18]

      Pan T, Wu Z J, Zhou K Y. In Situ Incorporation of Zn into Hierarchical ZSM-5 Zeolites for Olefin Hydroisomerization[J]. Ind. Eng. Chem. Res., 2020,59(27):12371-12380. doi: 10.1021/acs.iecr.0c01506

    19. [19]

      Wang N, Hou Y L, Sun W J, Cai D L, Chen Z H, Liu L M, Ge B H, Hu L, Qian W Z, Wei F. Modulation of b-Axis Thickness within MFI Zeolite: Correlation with Variation of Product Diffusion and Coke Distribution in the Methanol-to-Hydrocarbons Conversion[J]. Appl. Catal. B, 2019,243:721-733. doi: 10.1016/j.apcatb.2018.11.023

    20. [20]

      Zhang Y, Wu S D, Xu X, Jiang H Q. Ethane Aromatization and Evolution of Carbon Deposits over Nanosized and Microsized Zn/ZSM-5 Catalysts[J]. Catal. Sci. Technol., 2020,10(3):835-843. doi: 10.1039/C9CY01903K

    21. [21]

      Su X F, Zan W, Bai X F, Wang G L, Wu W. Synthesis of Microscale and Nanoscale ZSM-5 Zeolites: Effect of Particle Size and Acidity of Zn Modified ZSM-5 Zeolites on Aromatization Performance[J]. Catal. Sci. Technol., 2017,7:1943-1952. doi: 10.1039/C7CY00435D

    22. [22]

      Wang K, Dong M, Niu X J, Li J F, Qin Z F, Fan W B, Wang J G. Highly Active and Stable Zn/ZSM-5 Zeolite Catalyst for the Conversion of Methanol to Aromatics: Effect of Support Morphology[J]. Catal. Sci. Technol, 2018,8(21):5646-5656. doi: 10.1039/C8CY01734D

    23. [23]

      Tamiyakul S, Sooknoi T, Lobban L L, Jongpatiwut S. Generation of Reductive Zn Species over Zn/HZSM-5 Catalysts for n-Pentane Aromatization[J]. Appl. Catal. B, 2016,525(5):190-196.

    24. [24]

      Wan Z J, Wu W, Li G, Wang C F, Yang H, Zhang D K. Effect of SiO2/Al2O3 Ratio on the Performance of Nanocrystal ZSM-5 Zeolite Catalysts in Methanol to Gasoline Conversion[J]. Appl. Catal. A, 2016,523:312-320. doi: 10.1016/j.apcata.2016.05.032

    25. [25]

      Qiao J, Wang J P, Frenkel A I, Teng J W, Chen X Q, Xiao J X, Zhang T Z, Wang Z D, Yuan Z Q, Yang W M. Methanol to Aromatics: Isolated Zinc Phosphate Groups on HZSM-5 Zeolite Enhance BTX Selectivity and Catalytic Stability[J]. RSC Adv., 2020,105961. doi: 10.1039/C9RA09657D

    26. [26]

      Emeis C A. Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts[J]. J. Catal., 1993,141(2):347-354. doi: 10.1006/jcat.1993.1145

    27. [27]

      Ma T, Zhang L M, Song Y, Shang Y S, Zhai Y L, Gong Y J. A Comparative Synthesis of ZSM-5 with Ethanol or TPABr Template: Distinction of Brønsted/Lewis Acidity Ratio and Its Impact on n-Hexane Cracking[J]. Catal. Sci. Technol., 2018,8(7):1923-1935. doi: 10.1039/C7CY02418E

    28. [28]

      Liu J X, He N, Zhou W, Shu M, Lin L, Wang J L, Si R, Xiong G, Xin Q, Guo H C. Operando Dual Beam FTIR Spectroscopy Unravels the Promotional Effect of Zn on HZSM-5 in iso-Butane Aromatization[J]. Catal. Sci. Technol., 2019,9(7):1609-1620. doi: 10.1039/C9CY00136K

    29. [29]

      ZHANG J G, QIAN W Z, TANG X P, SHEN K, WANG T, HUANG X F, WEI F. Influence of Catalyst Acidity on Dealkylation, Isomerization and Alkylation in MTA Process[J]. Acta. Phys-Chim. Sin., 2013,29(6):1281-1288. doi: 10.3866/PKU.WHXB201304101

    30. [30]

      CHEN Z P, XU J, BAO X J. Studies on the Reaction Mechanism of Light Olefin Isomerization and Aromatization[J]. Chemical Industry and Engineering Progress, 2015,34(3):617-623.  

    31. [31]

      Niu X J, Gao J, Miao Q, Dong M, Wang G F, Fan W B, Qin Z F, Wang J G. Influence of Preparation Method on the Performance of Zn-Containing HZSM-5 Catalysts in Methanol-to-Aromatics[J]. Microporous Mesoporous Mater., 2014,197:252-261. doi: 10.1016/j.micromeso.2014.06.027

    32. [32]

      Fu T, Guo Y H, Shao J, Ma Q, Li Z. Precisely Regulating Acid Density and Types to Promote the Stable Two-Step Conversion of Methanol to Aromatics via Light Hydrocarbons[J]. Microporous Mesoporous Mater., 2021,320111103. doi: 10.1016/j.micromeso.2021.111103

    33. [33]

      Wang N, Hou Y L, Sun W J, Cai D L, Chen Z H, Liu L M, Ge B H, Hu L, Qian W Z, Wei F. Modulation of b-Axis Thickness within MFI Zeolite: Correlation with Variation of Product Diffusion and Coke Distribution in the Methanol-to-Hydrocarbons Conversion[J]. Appl. Catal. B, 2019,243:721-733. doi: 10.1016/j.apcatb.2018.11.023

    34. [34]

      Hawkins A P, Zachariou A, Parker S F, Collier P, Howe R F, Lennon D. Studies of Propene Conversion over H-ZSM-5 Demonstrate the Importance of Propene as an Intermediate in Methanol-to-Hydrocarbons Chemistry[J]. Catal. Sci. Technol., 2021,11:2924-2938. doi: 10.1039/D1CY00048A

    35. [35]

      Tabor E, Bernauer M, Wichterlová B, Dedecek J. Enhancement of Propene Oligomerization and Aromatization by Proximate Protons in Zeolites; FTIR Study of the Reaction Pathway in ZSM-5[J]. Catal. Sci. Technol., 2019,9:4262-4275. doi: 10.1039/C9CY00929A

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    7. [7]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    8. [8]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    9. [9]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    10. [10]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    11. [11]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    16. [16]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

Metrics
  • PDF Downloads(29)
  • Abstract views(1633)
  • HTML views(417)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return