Effects of Preformed Pt Nanoparticles on Structure of Platinum Nanowire Cathode for Proton Exchange Membrane Fuel Cells
- Corresponding author: Bing LI, bingli@ecust.edu.cn Sheng SUI, ssui@sjtu.edu.cn
Citation:
Hao-Jie WANG, Rui-Qing WANG, Bing LI, Sheng SUI. Effects of Preformed Pt Nanoparticles on Structure of Platinum Nanowire Cathode for Proton Exchange Membrane Fuel Cells[J]. Chinese Journal of Inorganic Chemistry,
;2022, 38(5): 787-799.
doi:
10.11862/CJIC.2022.103
Meng X T, Deng X, Zhou L S, Hu B, Tan W Y, Zhou W, Liu M L, Shao Z P. A Highly Ordered Hydrophilic -Hydrophobic Janus Bi-functional Layer with Ultralow Pt Loading and Fast Gas/Water Trans-port for Fuel Cells. Energy Environ[J]. Mater., 2021,4(1):126-133.
ZHAO X Y, WU Y E. Synthesis of High-Performance and Low-Loading PtCo/C Proton Exchange Membrane Fuel Cell Catalysts[J]. Chinese J. Inorg. Chem., 2021,37(8):1457-1464.
Garapati M S, Sundara R.. .Highly Efficient and ORR Active Platinum-Scandium Alloy -Partially Exfoliated Carbon Nanotubes Electrocata-lyst for Proton Exchange Membrane Fuel Cell. Int[J]. J. Hydrogen Energy, 2019,44(21):10951-10963. doi: 10.1016/j.ijhydene.2019.02.161
Zhang H X, Liang J Y, Xia B W, Du S F. Ionic Liquid Modified Pt/C Electrocatalysts for Cathode Application in Proton Exchange Mem-brane Fuel Cells[J]. Front. Chem. Sci. Eng., 2019,13(4):695-701. doi: 10.1007/s11705-019-1838-8
Li W B, Lin R, Yang Y. Investigation on the Reaction Area of PEMFC at Different Position in Multiple Catalyst Layer[J]. Electrochim. Acta, 2019,302:241-248. doi: 10.1016/j.electacta.2019.02.003
Wu Z Y, Iqbal Z, Wang X Q. Metal-Free, Carbon-Based Catalysts for Oxygen Reduction Reactions[J]. Front. Chem. Sci. Eng., 2015,9(3):280-294. doi: 10.1007/s11705-015-1524-4
Liu Z Y, Zhang J L, Yu P T, Zhang J X, Makharia R, More K L, Stach E A. Transmission Electron Microscopy Observation of Corrosion Behaviors of Platinized Carbon Blacks under Thermal and Electro-chemical Conditions[J]. J. Electrochem. Soc., 2010,157(6):B906-B913. doi: 10.1149/1.3391737
Lu Y X, Du S F, Steinterger-Wilckens R.. One-Dimensional Nano-structured Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells-A Review.[J]. Appl. Catal. B, 2016,199:292-314. doi: 10.1016/j.apcatb.2016.06.022
Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim F, Yan H Q. One-Dimensional Nanostructures: Synthesis, Char-acterization, and Applications[J]. Adv. Mater., 2003,15(5):353-389. doi: 10.1002/adma.200390087
Cademartiri L, Ozin G A. Ultrathin Nanowires-A Materials Chemistry Perspective[J]. Adv. Mater., 2009,21(9):1013-1020. doi: 10.1002/adma.200801836
Zhang J T, Li C M. Nanoporous Metals: Fabrication Strategies and Advanced Electrochemical Applications in Catalysis, Sensing and Energy Systems[J]. Chem. Soc. Rev., 2012,41(21):7016-7031. doi: 10.1039/c2cs35210a
Koenigsmann C, Zhou W P, Adzic R R, Sutter E, Wong S S.. Size-Dependent Enhancement of Electrocatalytic Performance in Rela-tively Defect -Free, Processed Ultrathin Platinum Nanowires.[J]. Nano Lett, 2010,10(8):2806-2811. doi: 10.1021/nl100718k
Xu L B, Yan Y S, Zhang C W, Chen J F. Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction[J]. Sci. Rep., 2016,631440. doi: 10.1038/srep31440
Wang C Z, Zhang Y, Zhang Y J, Xu P, Feng C M, Chen T, Guo T, Yang F N, Wang Q, Wang J X. Highly Ordered Hierarchical Pt and PtNi Nanowire Arrays for Enhanced Electrocatalytic Activity toward Methanol Oxidation[J]. ACS Appl. Mater. Interfaces, 2018,10(11):9444-9450. doi: 10.1021/acsami.7b19727
Li C L, Sato T, Yamauchi Y. Electrochemical Synthesis of One-Dimensional Mesoporous Pt Nanorods Using the Assembly of Surfac-tant Micelles in Confined Space[J]. Angew. Chem., 2013,125(31):8208-8211. doi: 10.1002/ange.201303035
Sun S H, Yang D Q, Zhang G X, Sacher E, Dodelet J P. Synthesis and Characterization of Platinum Nanowire-Carbon Nanotube Heter-ostructures[J]. Chem. Mater., 2007,19(26):6376-6378. doi: 10.1021/cm7022949
Sun S H, Yang D, Villers D, Zhang G X, Sacher E, Dodelet J P. Template-and Surfactant-Free Room Temperature Synthesis of Self-Assembled 3D Pt Nanoflowers from Single-Crystal Nanowires[J]. Adv. Mater., 2008,20(3):571-574. doi: 10.1002/adma.200701408
Sun S H, Jaouen F, Dodelet J P. Controlled Growth of Pt Nanowires on Carbon Nanospheres and Their Enhanced Performance as Elec-trocatalysts in PEM Fuel Cells[J]. Adv. Mater., 2008,20(20):3900-3904. doi: 10.1002/adma.200800491
Sun S H, Zhang G X, Geng D S, Chen Y Q, Li R Y, Cai M, Sun X L. A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal[J]. Angew. Chem, 2011,123(2):442-446. doi: 10.1002/ange.201004631
Meng H, Zhan Y, Zeng D, Zhang X X, Zhang G Q, Jaouen F. Factors Influencing the Growth of Pt Nanowires via Chemical Self-Assembly and Their Fuel Cell Performance[J]. Small, 2015,11(27):3377-3386. doi: 10.1002/smll.201402904
Du C Y, Cheng X Q, Yang T, Yin G P, Shi P F. Numerical Simula-tion of the Ordered Catalyst Layer in Cathode of Proton Exchange Membrane Fuel Cells[J]. Electrochem. Commun., 2005,7(12):1411-1416. doi: 10.1016/j.elecom.2005.09.022
Bonnefont A, Ruvinskiy P, Rouhet M, Orfanidi A, Neophytides S, Savinova E. Advanced Catalytic Layer Architectures for Polymer Electrolyte Membrane Fuel Cells[J]. WIREs Energy Environ., 2014,3(5):505-521. doi: 10.1002/wene.110
Tian Z Q, Lim S H, Poh C K, Tang Z, Xia Z T, Luo Z Q, Shen P K, Chua D, Feng Y P, Shen Z X. A. Highly Order -Structured Membrane Electrode Assembly with Vertically Aligned Carbon Nanotubes for Ultra-Low Pt Loading PEM Fuel Cells[J]. Adv. Energy Mater., 2011,1(6):1205-1214. doi: 10.1002/aenm.201100371
Du S F. A Facile Route for Polymer Electrolyte Membrane Fuel Cell Electrodes with In Situ Grown Pt Nanowires[J]. J. Power Sources, 2010,195(1):289-292. doi: 10.1016/j.jpowsour.2009.06.091
Su K H, Sui S, Yao X Y, Wei Z X, Zhang J L, Du S F. Controlling Pt Loading and Carbon Matrix Thickness for a High Performance Pt-Nanowire Catalyst Layer in PEMFCs[J]. Int. J. Hydrogen Energy, 2014,39(7):3397-3403. doi: 10.1016/j.ijhydene.2013.12.062
Wei Z X, He A, Su K H, Sui S.. Carbon Matrix Effects on the Micro-Structure and Performance of Pt Nanowire Cathode Prepared by Decal Transfer Method.[J]. J. Energy Chem, 2015,24(2):213-218. doi: 10.1016/S2095-4956(15)60303-5
Jana N R, Gearheart L, Murphy C J.. Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles[J]. Chem. Mater., 2001,13(7):2313-2322. doi: 10.1021/cm000662n
Zhao X J, Luo X J, Bazuin C G, Masson J F. In Situ Growth of AuNPs on Glass Nanofibers for SERS Sensors[J]. ACS Appl. Mater. Interfaces, 2020,12(49):55349-55361. doi: 10.1021/acsami.0c15311
Kuttner C, Mayer M, Dulle M, Moscoso A, López-Romero J M, Förster S, Fery A, Pérez-Juste J, Contreras -Cáceres R. Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analy-sis, and SERS Performance[J]. ACS Appl. Mater. Interfaces, 2018,10(13):11152-11163. doi: 10.1021/acsami.7b19081
Tangeysh B, Tibbetts K M, Odhner J H, Wayland B B, Levis R J. Gold Nanotriangle Formation through Strong-Field Laser Processing of Aqueous KAuCl4 and Postirradiation Reduction by Hydrogen Per-oxide[J]. Langmuir, 2017,33(1):243-252. doi: 10.1021/acs.langmuir.6b03812
Ooi M J, Aziz A A. Seed -Mediated Grown Platinum Nanocrystal: A Correlation between Seed Volume and Catalytic Performance of For-mic Acid and Ethanol Oxidation[J]. Int. J. Hydrogen Energy, 2017,42(14):9063-9068. doi: 10.1016/j.ijhydene.2016.06.032
Lu Y X, Du S F, Steinberger-Wilckens R. Three-Dimensional Cata-lyst Electrodes Based on PtPd Nanodendrites for Oxygen Reduction Reaction in PEFC Applications[J]. Appl. Catal. B, 2016,187:108-114. doi: 10.1016/j.apcatb.2016.01.019
Wang R Q, Cao X L, Sui S, Li B, Li Q F. Study on the Growth of Plat-inum Nanowires as Cathode Catalysts in Proton Exchange Membrane fuel cells[J]. Front. Chem. Sci. Eng., 2022,16:364-375. doi: 10.1007/s11705-021-2052-z
Berhault G, Bausach M, Bisson L, Becerra L, Thomazeau C, Uzio D.. Seed-Mediated Synthesis of Pd Nanocrystals: Factors Influencing a Kinetic-or Thermodynamic -Controlled Growth Regime[J]. J. Phys. Chem. C, 2007,111(16):5915-5925. doi: 10.1021/jp0702752
Lee E P, Chen J Y, Yin Y D, Campbell C T, Xia Y N. Pd-Catalyzed Growth of Pt Nanoparticles or Nanowires as Dense Coatings on Poly-meric and Ceramic Particulate Supports[J]. Adv. Mater., 2006,18(24):3271-3274. doi: 10.1002/adma.200601070
Du S F, Pollet B G.. Catalyst Loading for Pt -Nanowire Thin Film Electrodes in PEFCs[J]. Int. J. Hydrogen Energy, 2012,37(23):17892-17898. doi: 10.1016/j.ijhydene.2012.08.148
Zheng J, Zhou S Y, Gu S, Xu B J, Yan Y S. Size-Dependent Hydro-gen Oxidation and Evolution Activities on Supported Palladium Nanoparticles in Acid and Base[J]. J. Electrochem. Soc., 2016,163(6):F499-F506. doi: 10.1149/2.0661606jes
Lee W J, Bera S, Shin H C, Hong W P, Oh S J, Wan Z X, Kwon S H. Uniform and Size-Controlled Synthesis of Pt Nanoparticle Catalyst by Fluidized Bed Reactor Atomic Layer Deposition for PEMFCs[J]. Adv. Mater. Interfaces, 2019,6(21)1901210. doi: 10.1002/admi.201901210
Lee W J, Bera S, Woo H J, Ahn J W, Bae J S, Oh I K, Kwon S H. Controllable Size and Crystallinity of Ru Nanoparticles on Carbon Support by Fluidized Bed Reactor-Atomic Layer Deposition for Enhanced Hydrogen Oxidation Activity[J]. J. Mater. Chem. A, 2021,9:17223-17230. doi: 10.1039/D1TA03678E
Hou Y Z, Deng H, Pan F W, Chen W M, Du Q, Jiao K.. Pore-Scale Investigation of Catalyst Layer Ingredient and Structure Effect in Proton Exchange Membrane Fuel Cell[J]. Appl. Energy, 2019,253113561. doi: 10.1016/j.apenergy.2019.113561
Lu Y X, Du S F, Steinberger -Wilckens R.. Temperature-Controlled Growth of Single -Crystal Pt Nanowire Arrays for High Performance Catalyst Electrodes in Polymer Electrolyte Fuel Cells[J]. Appl. Catal. B, 2015,164:389-395. doi: 10.1016/j.apcatb.2014.09.040
Baricci A, Bonanomi M, Yu H, Guetaz L, Maric R, Casalegno A. Modelling Analysis of Low Platinum Polymer Fuel Cell Degradation under Voltage Cycling: Gradient Catalyst Layers with Improved Durability[J]. J. Power Sources, 2018,405:89-100. doi: 10.1016/j.jpowsour.2018.09.092
Thanh N T, Maclean N, Mahiddine S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution[J]. Chem. Rev., 2014,114(15):7610-7630. doi: 10.1021/cr400544s
Sosso G C, Chen J, Cox S J, Fitzner M, Pedevilla P, Zen A, Michae-lides A. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations[J]. Chem. Rev., 2016,116(12):7078-7116. doi: 10.1021/acs.chemrev.5b00744
Chayen N E. Methods for Separating Nucleation and Growth in Protein Crystallization[J]. Prog. Biophys. Mol. Biol., 2005,88(3):329-337. doi: 10.1016/j.pbiomolbio.2004.07.007
Nikoobakht B, El-Sayed M A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method[J]. Chem. Mater., 2003,15(10):1957-1962. doi: 10.1021/cm020732l
Xiong Y, Xiao L, Yang Y, DiSalvo F J, Abruña H D. High-Loading Intermetallic Pt3 Co/C Core-Shell Nanoparticles as Enhanced Activity Electrocatalysts toward the Oxygen Reduction Reaction (ORR)[J]. Chem. Mater., 2018,30(5):1532-1539. doi: 10.1021/acs.chemmater.7b04201
Wang L, Wang H J, Nemoto Y, Yamauchi Y. Rapid and Efficient Synthesis of Platinum Nanodendrites with High Surface Area by Chemical Reduction with Formic Acid[J]. Chem. Mater., 2010,22(9):2835-2841. doi: 10.1021/cm9038889
Su K H, Yao X Y, Sui S, Wei Z X, Zhang J L, Du S F. Matrix Material Study for In Situ Grown Pt Nanowire Electrocatalyst Layer in Proton Exchange Membrane Fuel Cells (PEMFCs)[J]. Fuel Cells, 2015,15(3):449-455. doi: 10.1002/fuce.201400168
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Naihong Wang , Longkang Zhang , Yejun Guan , Peng Wu , Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Huijie An , Chen Yang , Zhihui Jiang , Junjie Yuan , Zhongming Qiu , Longhao Chen , Xin Chen , Mutu Huang , Linlang Huang , Hongju Lin , Biao Cheng , Hongjiang Liu , Zhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Zimo Peng , Quan Zhang , Gaocan Qi , Hao Zhang , Qian Liu , Guangzhi Hu , Jun Luo , Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Jianqiu Li , Yi Zhang , Songen Liu , Jie Niu , Rong Zhang , Yong Chen , Yu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645
Yang Liu , Yan Liu , Kaiyin Yang , Zhiruo Zhang , Wenbo Zhang , Bingyou Yang , Hua Li , Lixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Yingying Yan , Wanhe Jia , Rui Cai , Chun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Hongliang Zeng , Yuan Ji , Jinfeng Wen , Xu Li , Tingting Zheng , Qiu Jiang , Chuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686
Tianyao He , Gan Li , Xiaoqiang Xie , Dong Han , Yunyue Leng , Qiuli Zhang , Wenming Liu , Guobo Li , Hongxiang Zhang , Shan Huang , Ting Huang , Honggen Peng . Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene. Chinese Chemical Letters, 2025, 36(4): 110137-. doi: 10.1016/j.cclet.2024.110137
Ruonan Yang , Jiajia Li , Dongmei Zhang , Xiuqi Zhang , Xia Li , Han Yu , Zhanhu Guo , Chuanxin Hou , Gang Lian , Feng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595
Yulin Mao , Jingyu Ma , Jiecheng Ji , Yuliang Wang , Wanhua Wu , Cheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
Pt NW loading and carbon loading of all samples were 0.2 and 0.1 mg·cm-2, respectively
Pt NW loading and carbon loading were 0.2 and 0.1 mg·cm-2, respectively and Pt NPs were originated from 40% Pt/C
Pt NW loading and carbon loading of all samples were 0.2 and 0.1 mg·cm-2, respectively
Pt NW loading and carbon loading of all cathodes were 0.2 and 0.1 mg·cm-2, respectively and Pt NPs were originated from 40% Pt/C
Pt NP loading, Pt NW loading, and carbon loading of all samples were 0.005, 0.2, and 0.1 mg·cm-2, respectively
Pt NP loading, Pt NW loading, and carbon loading of all samples were 0.005, 0.2, and 0.1 mg·cm-2, respectively
Pt NP loading, Pt NW loading, and carbon loading of all samples were 0.005, 0.2, and 0.1 mg·cm-2, respectively
Inset in b: ECSA values of corresponding cathodes; Pt NP loading, Pt NW loading, and carbon loading of all cathodes were 0.005, 0.2, and 0.1 mg·cm-2, respectively