Citation: Zhong-Lian XIAO, Xuan-Yi WU, He-Yun TAN, Shi-You HAO. CeO2@C Synthesized from Orange Peel as Carbon Source and Its Removal Performance for Acid Dyes[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 407-414. doi: 10.11862/CJIC.2022.062 shu

CeO2@C Synthesized from Orange Peel as Carbon Source and Its Removal Performance for Acid Dyes

  • Corresponding author: Shi-You HAO, sky54@zjnu.cn
  • Received Date: 31 July 2021
    Revised Date: 22 November 2021

Figures(13)

  • Using Ce(NO3)3·6H2O, orange peel as raw materials, aqueous ammonia as precipitant, CeO2·xH2O@OPP was synthesized via co-deposition method, and then CeO2@C composites were obtained by the calcination of CeO2·xH2O@OPP in N2. The resulted materials were characterized by FT-IR, X-ray diffraction, scanning electron microscope, Raman spectroscopy, UV-Vis, X-ray photoelectron spectroscopy, and photocurrent techniques. The results showed that Ce, C, O elements were evenly distributed in CeO2@C with many organic functional groups, abundant oxygen holes, and carbon bonds and that the organic functional groups in CeO2·xH2O@OPP, CeO2·xH2O, and CeO2@C were almost similar. The photocatalytic results illustrate that the introduction of C in CeO2@C is beneficial for the separation of photoelectrons and holes, and thus the improvement of photocurrent and photocatalytic efficiency and that the content of C in the resulted sample can greatly affect the adsorption and photocatalytic efficiency of organic dyes.
  • 加载中
    1. [1]

      Verma R, Samdarshi S K. In Situ Decorated Optimized CeO2 on Reduced Graphene Oxide with Enhanced Adsorptivity and Visible Light Photocatalytic Stability and Reusability[J]. J. Phys. Chem. C, 2016,20:22281-22290.

    2. [2]

      Yin D G, Zhao F F, Zhang L, Zhang X Y, Liu Y M, Zhang T T, Wu C L, Chen D W, Chen Z W. Greatly Enhanced Photocatalytic Activity of Semiconductor CeO2 by Integrating with Upconversion Nanocrystals and Grapheme[J]. RSC Adv., 2016,6:103795-103802. doi: 10.1039/C6RA19219J

    3. [3]

      Castellanos R M, Bassin J P, Dezotti M, Boaventura R A R, Vilar V J P. Tube-In-Tube Membrane Reactor for Heterogeneous TiO2 Photocatalysis with Radial Addition of H2O2[J]. Chem. Eng. J., 2020,395124998. doi: 10.1016/j.cej.2020.124998

    4. [4]

      Lee H K, Lee S W. Formation of Hollow Porous TiO2 Nanospheres via the Encapsulation of CO2 Nanobubbles for High-Performance Adsorption and Photocatalysis[J]. Dalton Trans., 2020,49:8274-8281. doi: 10.1039/D0DT01228A

    5. [5]

      Luo B Y, Chen W W, Ma J, Tian W, He C, Shui A Z, Du B. Fabrication of Tunable 1D Rod-like and 3D Yolk-like TiO2 Hierarchical Architectures for Efficient Photocatalysis[J]. J. Mater. Sci., 2020,55:3760-3773. doi: 10.1007/s10853-019-04247-4

    6. [6]

      Choi H, Khan S, Choi J, Dinh D T T, Lee S Y, Paik U, Cho S H, Kim S. Synergetic Control of Band Gap and Structural Transformation Foroptimizing TiO2 Photocatalysts[J]. Appl. Catal. B, 2017,210:513-521. doi: 10.1016/j.apcatb.2017.04.020

    7. [7]

      Huang Y C, Long B, Tang M N, Rui Z B, Balogum M S, Tong Y X, Ji H B. Bifunctional Catalytic Material: An Ultrastable and High-Performance Surface Defect CeO2 Nanosheets for Formaldehyde Thermal Oxidation and Photocatalytic Oxidation[J]. Appl. Catal. B, 2016,181:779-787. doi: 10.1016/j.apcatb.2015.08.047

    8. [8]

      Tambat S, Umale S, Sontakke S. Photocatalytic Degradation of Milling Yellow Dye Using Sol-Gel Synthesized CeO2[J]. Mater. Res. Bull., 2016,76:466-472. doi: 10.1016/j.materresbull.2016.01.010

    9. [9]

      Jiang N N, Li D Y, Liang L L, Xu Q, Shao L, Wang S B, Chen A Z, Wang J F. (Metal Yolk)/(Porous Ceria Shell) Nanostructures for High-Performance Plasmonic Photocatalysis under Visible Light[J]. Nano Res., 2020,13:1354-1362. doi: 10.1007/s12274-019-2599-x

    10. [10]

      Goncalves A, Silvestre-Albero J, Ramos-Fernández E V, Serrano-Ruiz J C, Orfao J J M, Sepúlveda-Escribano A, Pereira M F R. Highly Dispersed Ceria on Activated Carbon for the Catalyzed Ozonation of Organic Pollutants[J]. Appl. Catal. B, 2012,113-114:308-317. doi: 10.1016/j.apcatb.2011.11.052

    11. [11]

      Li M L, Zhang L X, Wu M Y, Du Y Y, Fan X Q, Wang M, Zhang L L, Kong Q L, Shi J L. Mesostructured CeO2/g-C3N4 Nanocomposites: Remarkably Enhanced Photocatalytic Activity for CO2 Reduction by Mutual Component Activations[J]. Nano Energy, 2016,19:145-155. doi: 10.1016/j.nanoen.2015.11.010

    12. [12]

      Wang H, Shang J, Xiao Z L, Aprea P, Hao S Y. Novel Construction of Carbon Bonds in CeO2@C with Efficiently Photocatalytic Activity[J]. Dyes Pigm., 2020,182108669. doi: 10.1016/j.dyepig.2020.108669

    13. [13]

      Qian J C, Chen Z G, Sun H, Chen F, Xu X, Wu Z Y, Li P, Ge W J. Enhanced Photocatalytic H2 Production on Three-Dimensional Porous CeO2/Carbon Nanostructure[J]. ACS Sustainable Chem. Eng., 2018,6:9691-9698. doi: 10.1021/acssuschemeng.8b00596

    14. [14]

      Xiao K X, Liu H, Li Y, Yang G Y, Wang Y J, Yao H. Excellent Performance of Porous Carbon from Urea-Assisted Hydrochar of Orange Peel for Toluene and Iodine Adsorption[J]. Chem. Eng. J., 2020,382122997. doi: 10.1016/j.cej.2019.122997

    15. [15]

      Irshad M S, Aziz M H, Fatima M, Rehman S U, Idrees M, Rana S, Shaheen F, Ahmed A, Javed M Q, Huang Q. Green Synthesis, Cytotoxicity, Antioxidant and Photocatalytic Activity of CeO2 Nanoparticles Mediated via Orange Peel Extract (OPE)[J]. Mater. Res. Express, 2019,60950a4. doi: 10.1088/2053-1591/ab3326

    16. [16]

      Liu B, Liu B B, Li Q J, Li Z P, Liu R, Zou X, Wu W, Cui W, Liu Z D, Li D M, Zou B, Cui T, Zou G T. Solvothermal Synthesis of Monodisperse Self-Assembly CeO2, Nanospheres and Their Enhanced Blue-Shifting in Ultraviolet Absorption[J]. J. Alloys Compd., 2010,503:519-524. doi: 10.1016/j.jallcom.2010.05.047

    17. [17]

      Gupta V K, Nayak A. Cadmium Removal and Recovery from Aqueous Solutions by Novel Adsorbents Prepared from Orange Peel and Fe2O3 Nanoparticles[J]. Chem. Eng. J., 2012,180:81-90. doi: 10.1016/j.cej.2011.11.006

    18. [18]

      Zhang G K, He Z L, Xu W. A Low-Cost and High Efficient Zirconium-Modified-Na-Attapulgite Adsorbent for Fluoride Removal from Aqueous Solutions[J]. Chem. Eng. J., 2012,183:315-324. doi: 10.1016/j.cej.2011.12.085

    19. [19]

      Feng N C, Guo X Y, Liang S, Zhu Y S, Liu J P. Biosorption of Heavy Metals from aqueous Solutions by Chemically Modified Orange Peel[J]. J. Hazard. Mater., 2011,185:49-54. doi: 10.1016/j.jhazmat.2010.08.114

    20. [20]

      Jänes A, Kurig H, Lust E. Characterization of Activated Nanoporous Carbon for Supercapacitor Electrode Materials[J]. Carbon, 2007,45:1226-1233. doi: 10.1016/j.carbon.2007.01.024

    21. [21]

      Corma A, Atienzar P, García H, Chane-Ching J Y. Hierarchically Mesostructured Doped CeO2 with Potential for Solar-Cell Use[J]. Nat. Mater., 2004,3:394-397. doi: 10.1038/nmat1129

    22. [22]

      Gu L N, Meng G Y. Powder Synthesis and Characterization of Nanocrystalline CeO2 via the Combustion Processes[J]. Mater. Res. Bull., 2007,42:1323-1331. doi: 10.1016/j.materresbull.2006.10.015

    23. [23]

      Yan Y B, Miao J W, Yang Z H, Xiao F X, Yang H B, Liu B, Yang Y H. Carbon Nanotube Catalysts: Recent Advances in Synthesis, Characterization and Applications[J]. Chem. Soc. Rev., 2015,44:3295-346.

    24. [24]

      Mittal M, Gupta A, Pandey O P. Role of Oxygen Vacancies in Ag/Au Doped CeO2 Nanoparticles for Fast Photocatalysis[J]. Sol. Energy, 2018,165:206-216. doi: 10.1016/j.solener.2018.03.033

    25. [25]

      Zheng X G, Huang M, You Y H, Peng H, Wen J. Core-Shell Structured α-Fe2O3@CeO2 Heterojunction for the Enhanced Visible-Light Photocatalytic Activity[J]. Mater. Res. Bull., 2018,101:20-28. doi: 10.1016/j.materresbull.2018.01.007

    26. [26]

      HAO S Y, WANG H, ZHONG Y C, YU H M, CHEN H S. Synthesis and Visible Light Catalytic Performance of Mesoporous NH2-Ce-Pr-O[J]. Journal of the Chinese Society of Rare Earths, 2018,36:541-549.  

    27. [27]

      Hao S Y, Hou J, Aprea P, Pepe F. Mesoporous Ce-Pr-O Solid Solution with Efficient Photocatalytic Activity under Weak Daylight Irradiation[J]. Appl. Catal. B, 2014,160-161:566-573. doi: 10.1016/j.apcatb.2014.06.013

  • 加载中
    1. [1]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    13. [13]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    14. [14]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    15. [15]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    17. [17]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    19. [19]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(2)
  • Abstract views(795)
  • HTML views(224)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return