Citation: Qing LIN, Miao-Miao LIU, Xi-Hang WU, Shui-Ping LI, Yuan-Yuan WANG, Xue-Min HU, Wei WANG, Xiao-Juan ZHANG. Preparation and Photocatalytic Performances of Au@g-C3N4 Scaffold[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 589-598. doi: 10.11862/CJIC.2022.058 shu

Preparation and Photocatalytic Performances of Au@g-C3N4 Scaffold

  • Corresponding author: Qing LIN, lnqing@jit.edu.cn
  • Received Date: 29 September 2021
    Revised Date: 20 January 2022

Figures(11)

  • The plastic melamine-formaldehyde, which was synthesized from melamine, formaldehyde, and urea, was used as the precursor for the formation of the melamine-formaldehyde scaffold by the microwave foaming method. Then, Au was deposited on the melamine-formaldehyde scaffold by the magnetron sputtering. Finally, Au deposited graphite carbon nitride (Au@g-C3N4) scaffold with a specific surface area of 1 480 m2·g-1 was successfully prepared by the thermal polymerization at 550 ℃. After deposited 6% Au, the UV - Vis spectrum of Au@g - C3N4 scaffold showed a new absorption peak at 550 nm, its absorption band edge was shifted to 507 nm, and its bandgap was reduced to 2.45 eV. Moreover, the fluorescence intensity and the electrochemical impedance decreased significantly, and the photocurrent increased from 0.28 to 0.62 μA·cm-2. The deposition of Au not only widens the UV - Vis absorption performance of Au@g-C3N4 scaffold but also inhibits the recombination of the electron -hole pairs. The photocatalytic performance of Au@g-C3N4 scaffold was stable, and its photocatalytic degradation rate for rhodamine B was about one time higher than that of g - C3N4 scaffold. Additionally, the Au@g - C3N4 scaffold would be easy to recycle and be reused in the applications, because the Au@g-C3N4 scaffold has suitable tensile strength and toughness.
  • 加载中
    1. [1]

      Lin Q, Li S P, Zhao Q Y, Wang W, Zhang X J, Hao L Y. Synergistic Effectiveness of Eggshell Membranes-supported Zinc Oxide Materials on the Removal of Organic Dyes from Wastewater[J]. Desalin. Water Treat., 2019,138:346-352. doi: 10.5004/dwt.2019.23248

    2. [2]

      Yan S C, Li Z S, Zou Z G. Photodegradation Performance of g - C3N4 Fabricated by Directly Heating Melamine[J]. Langmuir, 2009,25(17):10397-10401. doi: 10.1021/la900923z

    3. [3]

      Wen J Q, Xie J, Chen X B, Li X. A Review on g-C3N4-Based Photocatalysts[J]. Appl. Surf. Sci., 2017,391:72-123. doi: 10.1016/j.apsusc.2016.07.030

    4. [4]

      HOU J H, CAI R, SHENG M, JIANG K. Preparation and Visible Light Photocatalysis of Porous Nanosheet Graphitic Carbon Nitride[J]. Chinese J. Inorg. Chem., 2018,34(3):467-474.  

    5. [5]

      WANG H, ZHANG X D, XIE Y. Recent Progresses on the Photoexcitation Processes of Polymeric Carbon Nitride-Based Materials[J]. Chinese J. Inorg. Chem., 2017,33(11):1897-1913. doi: 10.11862/CJIC.2017.249 

    6. [6]

      LU Y, SHANGGUAN L, ZHANG H, WANG Y, TANG Y Y, SUN J H, LIU G X. Preparation of Carbon Self-Doping Graphic Carbon Nitride Nanosheets for Photocatalytic H2 Evolution Performance under Visible-Light Irradiation[J]. Chinese J. Inorg. Chem., 2021,37(4):668-674.  

    7. [7]

      Tan C E, Lee J T, Su E C, Wey M Y. Facile Approach for Z-Scheme Type Pt/g - C3N4/SrTiO3 Heterojunction Semiconductor Synthesis via Low - Temperature Process for Simultaneous Dyes Degradation and Hydrogen Production[J]. Int. J. Hydrogen Energy, 2020,45(24):13330-13339. doi: 10.1016/j.ijhydene.2020.03.034

    8. [8]

      Zhang W J, Xu D T, Wang F J, Chen M. AgCl/Au/g - C3N4 Ternary Composites: Efficient Photocatalysts for Degradation of Anionic Dyes[J]. J. Alloys Compd., 2021,868159266. doi: 10.1016/j.jallcom.2021.159266

    9. [9]

      ZHU K, OUYANG J, LIU J M, ZHU Y X, ZENG Q, CUI Y J. Preparation and Photocatalytic Hydrogen Evolution from Water of Oxygen Doped Carbon Nitride Nanosheets[J]. Chinese J. Inorg. Chem., 2019,35(6):1005-1012.  

    10. [10]

      NING X, WU Y T, WANG X F, LIU Y L. Preparation and Photocatalytic Activity of g - C3N4/SnO2 Composite[J]. Chinese J. Inorg. Chem., 2019,35(12):2243-2252. doi: 10.11862/CJIC.2019.272 

    11. [11]

      Wang W, Fang J J, Huang X. Different Behaviors Between Interband and Intraband Transitions Generated Hot Carriers on g-C3N4/Au for Photocatalytic H2 Production[J]. Appl. Surf. Sci., 2020,513145830. doi: 10.1016/j.apsusc.2020.145830

    12. [12]

      Baruah K, Kumar A, Deb P. Visible Light Active Au@g-C3N4 Core-Shell Plasmonic Photocatalyst[J]. Mater. Today, 2021,47(8):1627-1632.

    13. [13]

      Nasri A, Jaleh B, Nezafat Z, Nasrollahzadeh M, Azizian S, Jang H W, Shokouhimehr M. Fabrication of g-C3N4 /Au Nanocomposite Using Laser Ablation and Its Application as an Effective Catalyst in the Reduction of Organic Pollutants in Water[J]. Ceram. Int., 2021,47(3):3565-3572. doi: 10.1016/j.ceramint.2020.09.204

    14. [14]

      Liu Y L, Zhao X W, Ye L. A Novel Elastic Urea-Melamine-Formaldehyde Foam: Structure and Properties[J]. Ind. Eng. Chem. Res., 2016,55(32):8743-8750. doi: 10.1021/acs.iecr.6b01957

    15. [15]

      Wang D W, Zhang X X, Luo S, Li S. Preparation and Property Analysis of Melamine Formaldehyde Foam[J]. Adv. Mater. Phys. Chem., 2012,2(4):63-67. doi: 10.4236/ampc.2012.24B018

    16. [16]

      Mishra P M, Pattnaik S, Devi A P. Green Synthesis of Bio - based Au@g-C3N4 Nanocomposite for Photocatalytic Degradation of Methyl Orange[J]. Mater. Today, 2021,47(5):1218-1223.

    17. [17]

      Nanda K, Sahu S, Behera S. Liquid-Drop Model for the Size-Dependent Melting of Low-Dimensional Systems[J]. Phys. Rev. A, 2002,66(1):90-95.

    18. [18]

      Patnaik S, Sahoo D P, Parida K. Photo - Catalytic H2 Evolution over Au Modified Mesoporous g-C3N4[J]. Mater. Today, 2021,35:247-251.

    19. [19]

      Zhao X X, Guan J R, Li J Z, Li X, Wang H Q, Huo P W, Yan Y S. CeO2/3D g - C3N4 Heterojunction Deposited with Pt Cocatalyst for Enhanced Photocatalytic CO2 Reduction[J]. Appl. Surf. Sci., 2021,537147891. doi: 10.1016/j.apsusc.2020.147891

    20. [20]

      Wang D D, Li Y H, Yu B, Li H J, Jiang W, Deng X, Wen Y, Liu C B, Che G B. Improved Visible- Light Driven Photocatalysis by Loading Au onto C3N4 Nanorods for Degradation of RhB and Reduction of CO2[J]. Adv. Powder Technol., 2021,32(5):1653-1662. doi: 10.1016/j.apt.2021.03.022

    21. [21]

      Papailias I, Giannakopoulou T, Todorova N, Demotikali D, Vaimakis T, Trapalis C. Effect of Processing Temperature on Structure and Photocatalytic Properties of g-C3N4[J]. Appl. Surf. Sci., 2015,358:278-286. doi: 10.1016/j.apsusc.2015.08.097

    22. [22]

      Jiang J Z, Ou-yang L, Zhu L H, Zheng A M, Zou J, Yi X F, Tang H Q. Dependence of Electronic Structure of g-C3N4 on the Layer Number of Its Nanosheets: A Study by Raman Spectroscopy Coupled with First-Principles Calculations[J]. Carbon, 2014,80:213-221. doi: 10.1016/j.carbon.2014.08.059

    23. [23]

      Li H, Jing Y, Ma X L, Liu T Y, Yang L F, Liu B, Yin S, Wei Y Z, Wang Y H. Construction of a Well - Dispersed Ag/graphene - like g - C3N4 Photocatalyst and Enhanced Visible Light Photocatalytic Activity[J]. RSC Adv., 2017,7(14):8688-8693. doi: 10.1039/C6RA26498K

    24. [24]

      Qin Y Q, Lu J, Meng F Y, Lin X Y, Feng Y H, Yan Y, Meng M. Rationally Constructing of a Novel 2D/2D WO3/Pt/g-C3N4 Schottky-Ohmic Junction towards Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution and Mechanism Insight[J]. J. Colloid Interface Sci., 2021,586:576-587. doi: 10.1016/j.jcis.2020.10.123

    25. [25]

      Faisal M, Jalalah M, Harraz F A, El-Toni A M, Khan A, Al-Assiri M S. Au Nanoparticles - Doped g - C3N4 Nanocomposites for Enhanced Photocatalytic Performance under Visible Light Illumination[J]. Ceram. Int., 2020,46(14):22090-22101. doi: 10.1016/j.ceramint.2020.05.250

    26. [26]

      Pei F B, Feng S S, Wu Y, Lv X C, Wang H L, Chen S M, Hao Q L, Cao Y, Lei W, Tong Z Y. Label-Free Photoelectrochemical Immunosensor for Aflatoxin B1 Detection Based on the Z - Scheme Heterojunction of g-C3N4/Au/WO3[J]. Biosens. Bioelectron., 2021,189113373. doi: 10.1016/j.bios.2021.113373

    27. [27]

      TANG J, LI Z F, YANG X F, LI J, ZHANG T T. Effect of Dry and Wet Environment of Ball Milling on Visible Light Catalytic Performance of Sulfur - Doped Carbon Nitride[J]. Chinese J. Inorg. Chem., 2020,36(3):475-484.  

    28. [28]

      Mousavi M, Habibi - Yangjeh A. Decoration of Fe3 O4 and CoWO4 Nanoparticles over Graphitic Carbon Nitride: Novel Visible - Light - Responsive Photocatalysts with Exceptional Photocatalytic Performances[J]. Mater. Res. Bull., 2018,105:159-171. doi: 10.1016/j.materresbull.2018.04.052

    29. [29]

      Fu J W, Yu J G, Jiang C J, Cheng B. g-C3N4-Based Heterostructured Photocatalysts[J]. Adv. Energy Mater., 2018,8(3)1701503. doi: 10.1002/aenm.201701503

    30. [30]

      CHEN Y, LIU H B. Construction and Photocatalytic Performance of Ultrathin Graphitic Carbon Nitride Nanosheets[J]. Chinese J. Inorg. Chem., 2017,33(12):2255-2261. doi: 10.11862/CJIC.2017.218 

    31. [31]

      Fu Y S, Huang T, Jia B Q, Zhu J W, Wang X. Reduction of Nitrophenols to Aminophenols under Concerted Catalysis by Au/g-C3N4 Contact System[J]. Appl. Catal. B, 2017,202:430-437. doi: 10.1016/j.apcatb.2016.09.051

    32. [32]

      Lee J T, Chen Y J, Su E C, Wey M Y. Synthesis of Solar - Light Responsive Pt/g-C3N4 /SrTiO3 Composite for Improved Hydrogen Production: Investigation of Pt/g-C3N4/SrTiO3 Synthetic Sequences[J]. Int. J. Hydrogen Energy, 2019,44(39):21413-21423. doi: 10.1016/j.ijhydene.2019.06.178

  • 加载中
    1. [1]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    4. [4]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    6. [6]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    11. [11]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    12. [12]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    13. [13]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    14. [14]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    18. [18]

      Chengxiao ZhaoZhaolin LiDongfang WuXiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149

    19. [19]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(3)
  • Abstract views(1142)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return