Citation: Sun-Ming GAO, Shu-Juan ZHENG, Wei JIANG, Geng-Shen HU. Porous Carbon Material: Post-treatment through Chemical Vapor Method and Supercapacitor Performance[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 479-488. doi: 10.11862/CJIC.2022.054 shu

Porous Carbon Material: Post-treatment through Chemical Vapor Method and Supercapacitor Performance

Figures(8)

  • Porous carbon with a high specific surface area was prepared using a cheap coconut shell as raw material, and then the porous carbons were treated with nitric acid vapor in a closed reactor to improve the hydrophilicity of carbons. Using scanning transmission electron microscopy (TEM), physical adsorption, X-ray powder diffraction (XRD), Raman spectroscopy, and contact angle tests to measure the morphology, pore structure, composition, and hydrophilicity of carbons. The influence of nitric acid vapor on the morphology and structure of porous carbon materials at different temperatures was explored. Cyclic voltammetry, galvanostatic charge and discharge, and electro-chemical impedance methods were used to investigate the supercapacitor performance of porous carbon materials. The results showed that the specific surface areas and pore volumes of the porous carbon vapor were reduced after the post-treatment of nitric acid vapor, and the decrease was more obvious with the increase of the treatment temper-ature, while the hydrophilicity was getting better. Electrochemical test results showed that the porous carbon material (CSC-100) treated with 100 ℃ nitric acid vapor had the best supercapacitor performance. In the three electrodes system with 6 mol·L-1 KOH as the electrolyte, when the current density was 0.5 A·g-1, the specific capacitance of CSC-100 can reach 452.9 F·g-1, while the specific capacitance of untreated carbon (CSC) was only 350.4 F·g-1. The capacitance contribution analysis shows that the good hydrophilicity and surface functional groups of CSC-100 increase not only the electric double-layer capacitance but also improve the pseudocapacitance.
  • 加载中
    1. [1]

      Tran M H, Kyung J H. Ternary Carbon Composite Films for Superca-pacitor Applications[J]. Chem. Phys. Lett., 2017,684:1-7. doi: 10.1016/j.cplett.2017.06.025

    2. [2]

      Zhang Y C, Lin R, Fu Y, Wang X J, Yu X, Li J L, Zhu Y, Tan S Z, Wang Z L. Metal-Organic Framework Derived Fe2O3 Nanocubes on Intertwined N-Doped Carbon Nanowires for Fiber-Shaped Supercapacitor[J]. Mater. Lett., 2018,228:9-12. doi: 10.1016/j.matlet.2018.05.073

    3. [3]

      Liu S W, Li K, Zheng X B. Room-Temperature Facile Synthesis of MnO2 on Carbon Film via UV-Photolysis for Supercapacitor[J]. Prog. Nat. Sci., 2019,29(1):16-19. doi: 10.1016/j.pnsc.2019.03.016

    4. [4]

      Li Z H, Xu K, Pan Y S. Recent Development of Supercapacitor Electrode Based on Carbon Materials[J]. Nanotechnol. Rev., 2019,8(1):35-49. doi: 10.1515/ntrev-2019-0004

    5. [5]

      Conway B E, Birss V, Wojtowicz J. The Role and Utilization of Pseu-docapacitance for Energy Storage by Supercapacitors[J]. J. Power Sources, 1997,66(1/2):1-14.

    6. [6]

      Qiu Y F, Cheng Z Y, Guo B, Fan H B, Sun S F, Wu T, Jin L, Fan L, Feng X Y. Preparation of Activated Carbon Paper through a Simple Method and Application as a Supercapacitor[J]. J. Mater. Sci., 2015,50(4):1586-1593. doi: 10.1007/s10853-014-8719-9

    7. [7]

      Qu D Y, Wang L L, Zheng D, Xiao L, Deng B H, Qu D Y. An Asymmetric Supercapacitor with Highly Dispersed Nano-Bi2O3 and Active Carbon Electrodes[J]. J. Power Sources, 2014,269:129-135. doi: 10.1016/j.jpowsour.2014.06.084

    8. [8]

      WU Z Y, FAN L, TAO Y R, WANG W, WU X C, ZHAO J W. Pomelo Peel Derived Hierarchical Porous Carbon as Electrode Materials for High-Performance Supercapacito[J]. Chinese J. Inorg. Chem., 2018,34(7):1249-1260.  

    9. [9]

      LI D, LIU Y R, LIN B P, SUN Y, YANG H, ZHANG X Q. Graphene/Metal Oxide Composites as Electrode Material for Supercapacitors[J]. Prog. Chem., 2015,27(4):404-415.  

    10. [10]

      Jung H Y, Yong R K, Jeong H T. All-Solid-State Supercapacitor Composed of Reduced Graphene Oxide (rGO)/Activated Carbon (AC) Composite and Polymer Electrolyte[J]. Carbon Lett., 2020,30(1):107-113. doi: 10.1007/s42823-019-00077-1

    11. [11]

      Yu H J, Wu J H, Fan L Q, Lin Y Z, Xu K Q, Tang Z Y, Cheng C X, Tang S, Lin J M, Huang M L, Lan Z. A Novel Redox-Mediated Gel Polymer Electrolyte for High-Performance Supercapacitor[J]. J. Power Sources, 2012,198:402-407. doi: 10.1016/j.jpowsour.2011.09.110

    12. [12]

      Chepurnaya I A, Logvinov S A, Karushev M P, Timonov A M, Malev V V. Modification of Supercapacitor Electrodes with Polymer Metal-locomplexes: Methods and Results[J]. Russ. J. Electrochem., 2012,48(5):538-544. doi: 10.1134/S1023193512040040

    13. [13]

      Selvakumar M, Bhat D K. Microwave Synthesized Nanostructured TiO2-Activated Carbon Composite Electrodes for Supercapacitor[J]. Appl. Surf. Sci., 2012,263:236-241. doi: 10.1016/j.apsusc.2012.09.036

    14. [14]

      Song L F, Zou Y J, Zhang H T, Xiang C L, Chu H L, Qiu S J, Yan E H, Xu F, Sun L X. High Performance Supercapacitor Based on Polypyrrole/Melamine Formaldehyde Resin Derived Carbon Material[J]. Int. J. Electrochem. Sci., 2017,12(2):1014-1024.  

    15. [15]

      Tang Y F, Liu Y Y, Yu S X, Gao F M, Zhao Y F. Comparative Study on Three Commercial Carbons for Supercapacitor Applications[J]. Russ. J. Electrochem., 2015,51(1):77-85. doi: 10.1134/S1023193514100127

    16. [16]

      Miao H J, Zhong W S, Yuan H L, Jiang W, Hu G S. One-Pot Synthesis of Nitrogen-Doped Carbons with Hierarchically Micro-and Meso-porous Structures for Supercapacitors and CO2 Capture[J]. New J. Chem., 2021,45(15):6618-6629. doi: 10.1039/D0NJ05523A

    17. [17]

      Guo D D, Xin R R, Zhang Z, Jiang W, Hu G S, Fan M H. N-Doped Hierarchically Micro-and Mesoporous Carbons with Superior Performance in Supercapacitors[J]. Electrochim. Acta, 2018,291:103-113. doi: 10.1016/j.electacta.2018.08.109

    18. [18]

      XIN R R, MIAO H J, JIANG W, HU G S. N-Doped Porous Carbons with High Surface Areas Prepared through One-Step Chemical Activation and Their Application for Supercapacitors[J]. Chinese J. Inorg. Chem., 2019,35(10):1781-1790. doi: 10.11862/CJIC.2019.222

    19. [19]

      Sahu V, Shekhar S, Ahuja P, Gupta G, Singh S K, Sharma R K, Singh G. Synthesis of Hydrophilic Carbon Black; Role of Hydrophilicity in Maintaining the Hydration Level and Protonic Conduction[J]. RSC Adv., 2013,3(12):3917-3924. doi: 10.1039/c3ra23136d

    20. [20]

      Luo Q, Cheng Z Y, Qiu Y F, Zhang N, Fan H B. Effect of Surface Hydrophilicity on the Supercapacitive Performance of Carbon Paper[J]. Ionics, 2017,23(7):1915-1920. doi: 10.1007/s11581-017-2140-8

    21. [21]

      Guan T X, Shen L M, Bao N Z. Hydrophilicity Improvement of Graphene Fibers for High-Performance Flexible Supercapacitor[J]. Ind. Eng. Chem. Res., 2019,58(37):17338-17345. doi: 10.1021/acs.iecr.9b02504

    22. [22]

      Jin H, Wang X M, Gu Z R, Polin J. Carbon Materials from High Ash Biochar for Supercapacitor and Improvement of Capacitance with HNO3 Surface Oxidation[J]. J. Power Sources, 2013,236:285-292. doi: 10.1016/j.jpowsour.2013.02.088

    23. [23]

      Song X Y, Ma X L, Li Y, Ding L, Jiang R Y. Tea Waste Derived Microporous Active Carbon with Enhanced Double-Layer Superca-pacitor Behaviors[J]. Appl. Surf. Sci., 2019,487:189-197. doi: 10.1016/j.apsusc.2019.04.277

    24. [24]

      Yang J, Wu H L, Zhu M, Ren W J, Lin Y, Chen H B, Pan F. Optimized Mesopores Enabling Enhanced Rate Performance in Novel Ultrahigh Surface Area Meso-/Microporous Carbon for Supercapacitors[J]. Nano Energy, 2017,33:453-461. doi: 10.1016/j.nanoen.2017.02.007

    25. [25]

      Watanabe A, Cai J. Laser Direct Writing of Conductive Carbon Microelectrodes and Micro-Supercapacitor Applications[J]. J. Laser Micro/Nanoeng., 2020,15(2):92-96.  

    26. [26]

      Phattharasupakun N, Wutthiprom J, Chiochan P, Suktha P, Suksomboon M, Kalasina S, Sawangphruk M. Turning Conductive Carbon Nanospheres into Nanosheets for High-Performance Supercapacitors of MnO2 Nanorods[J]. Chem. Commun., 2016,52(12):2585-2588. doi: 10.1039/C5CC09648K

    27. [27]

      Guo D D, Qian J, Xin R R, Zhang Z, Jiang W, Hu G S, Fan M H. Facile Synthesis of Nitrogen-Enriched Nanoporous Carbon Materials for High Performance Supercapacitors[J]. J. Colloid Interface Sci., 2019,538:199-208. doi: 10.1016/j.jcis.2018.11.107

    28. [28]

      Xie L J, Sun G H, Su F Y, Guo X Q, Kong Q Q, Li X M, Huang X H, Wan L, Song W, Li K X, Lv C X, Chen C M. Hierarchical Porous Carbon Microtubes Derived from Willow Catkins for Supercapacitor Applications[J]. J. Mater. Chem. A, 2016,4(5):1637-1646. doi: 10.1039/C5TA09043A

    29. [29]

      Chen A B, Wang Y Y, Yu Y F, Sun H X, Li Y Q, Xia K C, Li S H. Nitrogen-Doped Hollow Carbon Spheres for Supercapacitors[J]. J. Mater. Sci., 2017,52(6):3153-3161. doi: 10.1007/s10853-016-0604-2

    30. [30]

      Wang Y L, Xuan H Q, Lin G X, Wang F, Chen Z, Dong X P. A Melamine-Assisted Chemical Blowing Synthesis of N-Doped Activated Aarbon Sheets for Supercapacitor Application[J]. J. Power Sources, 2016,319:262-270. doi: 10.1016/j.jpowsour.2016.04.069

    31. [31]

      Chang Q h, Li L M, Sai L M, Shi W Z, Chen Q, Huang L. Intercon-nected Binary Carbon Hybrids for Supercapacitor Electrode[J]. Electrochim. Acta, 2017,251:293-300. doi: 10.1016/j.electacta.2017.08.109

    32. [32]

      Zhang D Y, Zheng L W, Ma Y, Lei L Y, Li Q L, Li Y, Luo H M, Feng H X, Hao Y. Synthesis of Nitrogen-and Sulfur-Codoped 3D Cubic-Ordered Mesoporous Carbon with Superior Performance in Supercapacitors[J]. ACS Appl. Mater. Interfaces, 2014,6(4):2657-2665. doi: 10.1021/am405128j

    33. [33]

      Li Y J, Wang G L, Wei T, Fan Z J, Yan P. Nitrogen and Sulfur Codoped Porous Carbon Nanosheets Derived from Willow Catkin for Supercapacitors[J]. Nano Energy, 2016,19:165-175. doi: 10.1016/j.nanoen.2015.10.038

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    6. [6]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    9. [9]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    10. [10]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    11. [11]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    12. [12]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    13. [13]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    14. [14]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    15. [15]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    16. [16]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    17. [17]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    18. [18]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    19. [19]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    20. [20]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

Metrics
  • PDF Downloads(12)
  • Abstract views(1154)
  • HTML views(314)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return