Citation: Hao-Sen LIAO, Jun-Yi GAN, Xin XIA, Yong-Xu HU, Dong-Dong XIE, Dong-Yu ZHANG, Xiao LI. Synthesis of Fluorinated Diphenylbenzimidazole Iridium Complexes Based on Different Auxiliary Ligands and Solution-Processed Electroluminescent Devices[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 399-406. doi: 10.11862/CJIC.2022.052 shu

Synthesis of Fluorinated Diphenylbenzimidazole Iridium Complexes Based on Different Auxiliary Ligands and Solution-Processed Electroluminescent Devices

  • Corresponding author: Xiao LI, lixiao@ustl.edu.cn
  • Received Date: 13 September 2021
    Revised Date: 30 November 2021

Figures(6)

  • Nine benzimidazole-iridium(Ⅲ) complexes Ir-1a-Ir-3c were designed and synthesized by using fluorinated diphenylbenzimidazole derivatives as the main ligands and acetylacetone (corresponding complexes: Ir-1a-Ir-3a), 2-pyridine carboxylic acid (corresponding complexes: Ir-1b-Ir-3b), and 2-(5-trifluoromethyl-2H-[1,2,4]triazol-3-yl)-pyridine (tftp, corresponding complexes: Ir-1c-Ir-3c) as the auxiliary ligands, respectively. The effects of the degree of fluorination and different auxiliary ligands on the photophysical properties of the corresponding iridium complexes were investigated. The maximum emission wavelengths of the nine complexes were located in a range of 487-502 nm, showing green to blue-green phosphorescent emission. The largest blue shift was observed for the complexes based on tftp as an auxiliary ligand, especially for Ir-1c compared to Ir-1a with a blue shift of 17 nm. The nine complexes showed excellent photoluminescence efficiencies of 52%-87%. Furthermore, all iridium(Ⅲ) complexes exhibited good thermal stability, and the thermal decomposition temperatures were 313-390 ℃ (5% weight loss). Four iridium complexes of Ir-1c, Ir-2c, Ir-3c, and Ir-2b were selected for spin-coated electroluminescent devices with a doping concentration of 9%. The results show that the change of the primary and secondary ligands has a large effect on the luminescent color and luminescent efficiency of the light-emitting diodes. The Ir-3c-doped spin-coated devices had the highest device efficiency with an external quantum efficiency of 10.2%, a current efficiency of up to 30.3 cd·A-1, and a maximum power efficiency of 14.7 lm·W-1.
  • 加载中
    1. [1]

      HUANG W, MI B X, GAO Z Q. Organic Electronics. Beijing: Science Press, 2011: 267-268

    2. [2]

      Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices[J]. Nature, 1998,395(6698):151-154. doi: 10.1038/25954

    3. [3]

      LI H Y, HUANG Y C, LI Z B, GUO H Q, YANG X, YANG T T, LU A D. Synthesis and Electroluminescence of a Red Iridium Complex[J]. Chinese J. Inorg. Chem., 2018,34(12):2211-2218. doi: 10.11862/CJIC.2018.238 

    4. [4]

      Ding L, Zang C X, Wen L L, Shan G G, Gao Y, Sun H Z, Xie W F, Su Z M. High-Performance and Stable Warm White OLEDs Based on Orange Iridium (Ⅲ) Phosphors Modified with Simple Alkyl Groups[J]. Organometallics, 2020,39(18):3384-3393. doi: 10.1021/acs.organomet.0c00472

    5. [5]

      Luo X F, Qu Z Z, Han H B, Su J, Yan Z P, Zhang X M, Tong J J, Zheng Y X, Zuo J L. Carbazole-Based Iridium(Ⅲ) Complexes for Electrophosphorescence with EQE of 32[J]. 2% and Low Efficiency Roll-Off. Adv. Opt. Mater., 2020,9(3)2001390.

    6. [6]

      Chen Z Q, Bian Z Q, Huang C H. Functional Ir Complexes and Their Application[J]. Adv. Mater., 2010,22(13):1534-1539. doi: 10.1002/adma.200903233

    7. [7]

      Chen S N, Gai X, Liang J, Ye K Q, Liu Y, Wang Y. Highly Efficient Phosphorescent Organic Light-Emitting Diodes Based on Novel Bipolar Iridium Complexes with Easily-Tuned Emission Colors by Adjusting Fluorine Substitution on Phenylpyridine Ligands[J]. J. Mater. Chem. C, 2021,9(26):8329-8336. doi: 10.1039/D1TC01498F

    8. [8]

      Hu Y X, Xia X, He W Z, Tang Z J, Lv Y L, Li X, Zhang D Y. Recent Developments in Benzothiazole-Based Iridium(Ⅲ) Complexes for Application in OLEDs as Electrophosphorescent Emitters[J]. Org. Electron., 2019,66:126-135. doi: 10.1016/j.orgel.2018.12.029

    9. [9]

      Rai V K, Nhshiura M, Takimoto M, Zhao S S, Liu Y, Hou Z M. Biscyclometalated Iridium(Ⅲ) Complexes Bearing Ancillary Guanidinate Ligands. Synthesis, Structure, and Highly Efficient Electroluminescence. Inorg.[J]. Inorg. Chem., 2012,51(2):822-835. doi: 10.1021/ic201217a

    10. [10]

      Monti F, Kessler F, Delgado M, Frey J, Bazzanini F, Accorsi G, Armaroli N, Bolink H J, Orti E, Scopelliti R, Nazeeruddin M K, Baranoff E. Charged Bis-cyclometalated Iridium(Ⅲ) Complexes with Carbene-Based Ancillary Ligands[J]. Inorg. Chem., 2013,52(18):10292-10305. doi: 10.1021/ic400600d

    11. [11]

      Sahin C, Goren A, Varlikli C. Synthesis, Characterization and Photophysical Properties of Iridium Complexes with Amidinate Ligands[J]. J. Organomet. Chem., 2014,772-773:68-78. doi: 10.1016/j.jorganchem.2014.08.031

    12. [12]

      Kang D M, Kang J W, Park J W, Jung S O, Lee S H, Park H D, Kim Y H, Shin S C, Kim J J, Kwon S K. Iridium Complexes with Cyclometalated 2-Cycloalkenyl-Pyridine Ligands as Highly Efficient Emitters for Organic Light-Emitting Diodes[J]. Adv. Mater., 2008,20(10):2003-2007. doi: 10.1002/adma.200702558

    13. [13]

      Xiao L X, Chen Z J, Qu B, Luo J X, Kong S, Gong Q H, Kido J J. Recent Progresses on Materials for Electrophosphorescent Organic Light-Emitting Devices[J]. Adv. Mater., 2011,23(8):926-952. doi: 10.1002/adma.201003128

    14. [14]

      Chen X W, Liao J L, Liang Y M, Ahmed M O, Tseng H E, Chen S A. High-Efficiency Red-Light Emission from Polyfluorenes Grafted with Cyclometalated Iridium Complexes and Charge Transport Moiety[J]. J. Am. Chem. Soc., 2003,125(3):636-637.

    15. [15]

      Lee S H, Kim S O, Shin H, Yun H J, Yang K, Kwon S K, Kim J J, Kim Y H. Deep-Blue Phosphorescence from Perfluoro Carbonyl-Substituted Iridium Complexes[J]. J. Am. Chem. Soc., 2013,135(38):14321-14328.

    16. [16]

      Miao Y Q, Tao P, Gao Long, Li X L, Wei L W, Liu S J, Wang H, Xu B S, Zhao Q. Highly Efficient Chlorine Functionalized Blue Iridium(Ⅲ) Phosphors for Blue and White Phosphorescent Organic Light-Emitting Diodes with External Quantum Efficiency Exceeding 20%[J]. J. Mater. Chem. C, 2018,6(25):6656-6665.

    17. [17]

      Sun P, Wang K X, Zhao B, Yang T T, Xu H X, Miao Y Q, Wang H, Xu B S. Blue-Emitting Ir(Ⅲ) Complexes Using Fluorinated Bipyridyl as Main Ligand and 1, 2, 4-Triazol as Ancillary Ligand: Syntheses, Photophysical Properties and Performances in Devices[J]. Tetrahedron, 2016,72(50):8335-8341.

    18. [18]

      Mao H T, Zang C X, Wen L L, Shan G G, Sun H Z, Xie W F, Su Z M. Ir(Ⅲ) Phosphors Modified with Fluorine Atoms in Pyridine-1, 2, 4-triazolyl Ligands for Efficient OLEDs Possessing Low-Efficiency Roll-Off[J]. Organometallics, 2016,35(22):3870-3877.

    19. [19]

      Kang H J, Lee K H, Lee S J, Seo J H, Kim Y K, Yoon S S. Highly Efficient Red Phosphorescent OLEDs Based on Ir(Ⅲ) Complexes with Fluorine-Substituted Benzoylphenylpyridine Ligand[J]. Bull. Korean Chem. Soc., 2010,31(12):3711-3717.

    20. [20]

      Kessler F, Watanabe Y, Sasabe H, Katagiri H, Nazeeruddin M K, Gratzel M, Kido J J. High-Performance Pure Blue Phosphorescent OLED Using a Novel Bis-heteroleptic Iridium(Ⅲ) Complex with Fluorinated Bipyridyl Ligands[J]. J. Mater. Chem. C, 2013,1(6):1070-1075.

    21. [21]

      Kim J B, Han S H, Yang K, Kwon S K, Kim J J, Kim Y H. Highly Efficient Deep-Blue Phosphorescence from Heptafluoropropyl-Substituted Iridium Complexes[J]. Chem. Commun., 2015,51(1):58-61.

    22. [22]

      Xu H X, Wang F, Wang K X, Sun P, Li J, Yang T T, Wang H, Xu B S. Two Novel Bipolar Ir(Ⅲ) Complexes Based on 9-(4-(Pyridin-2-yl) phenyl)-9H-carbazole and N-Heterocyclic Ligand[J]. Dyes Pigm., 2017,146:316-322.

    23. [23]

      Zhao J H, Hu Y X, Dong Y, Xia X, Chi H J, Xiao G Y, Li X, Zhang D Y. Novel Bluish Green Benzimidazole-Based Iridium(Ⅲ) Complexes for Highly Efficient Phosphorescent Organic Light-Emitting Diodes[J]. New J. Chem., 2017,41(5):1973-1979.

    24. [24]

      LIU H M, ZHENG C J, HE J, ZHANG X H. High Efficient Solution Processed Small Molecular Phosphorescent Organic Light-Emitting Diodes[J]. Imaging Science and Photochemistry, 2008,26(1):8-15.  

  • 加载中
    1. [1]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    2. [2]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    7. [7]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    8. [8]

      Liuxie Liu Jing He Jiali Du Shuang Mao Qianggen Li . Extension of Computational Chemical-Assisted Dipole Moment Measurement Experiment. University Chemistry, 2025, 40(3): 363-370. doi: 10.12461/PKU.DXHX202407108

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    10. [10]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    11. [11]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    12. [12]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    13. [13]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    14. [14]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    15. [15]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    16. [16]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    17. [17]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    18. [18]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    19. [19]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(8)
  • Abstract views(903)
  • HTML views(270)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return