Citation: Feng CHEN, Cheng-Hua ZHANG, Pei-Yue JIN, Cai-Xian ZHAO. Preparation of Z-Scheme α-Fe2O3/g-C3N4 Heterojunction Based on In-Situ Photodeposition and Photocatalytic Activity for Hydrogen Production under Visible Light[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 469-478. doi: 10.11862/CJIC.2022.045 shu

Preparation of Z-Scheme α-Fe2O3/g-C3N4 Heterojunction Based on In-Situ Photodeposition and Photocatalytic Activity for Hydrogen Production under Visible Light

Figures(12)

  • A Z-scheme α-Fe2O3/g-C3N4 photocatalyst was successfully prepared by the method of in-situ photodeposition-calcination. The as-prepared samples were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, and electrochemical test. The photocatalytic activity was evaluated by visible-light-driven water-splitting hydrogen production. The results showed that when the loading amount of α-Fe2O3 was 2.9%, the photocatalyst exhibited remarkably high photocatalytic activity toward H2 evolution with a rate of 1 841.9 μmol·g-1·h-1, 3.3 times higher than that of pure g-C3N4. The enhanced performance is attributed to the following reasons: (1) α-Fe2O3 promotes exfoliation of g-C3N4 during high-temperature calcination, enlarging specific surface area and providing more active sites; (2) ultrafine α-Fe2O3 particles (5-8 nm) are highly uniformly dispersed on the surface of g-C3N4 and tightly combined to it, forming high-quality Z-scheme heterojunctions; (3) the Z-scheme structure not only effectively suppresses the photocarriers recombination, but also greatly retains the strong reduction originated from g-C3N4 conduction band and the strong oxidation originated from α-Fe2O3 valence band.
  • 加载中
    1. [1]

      Mishra A, Mehta A, Basu S, Shetti N P, Reddy K R, Aminabhavi T M. Graphitic Carbon Nitride (g-C3N4)-Based Metal-Free Photocatalysts for Water Splitting[J]. Carbon, 2019,149:693-721. doi: 10.1016/j.carbon.2019.04.104

    2. [2]

      Ye S, Wang R, Wu M Z, Yuan Y P. A Review on g-C3N4 for Photocata-lytic Water Splitting and CO2 Reduction[J]. Appl. Surf. Sci., 2015,358:15-27. doi: 10.1016/j.apsusc.2015.08.173

    3. [3]

      Wen J Q, Xie J, Chen X B, Li X. A Review on g-C3N4-Based Photocat-alysts[J]. Appl. Surf. Sci., 2017,391:72-123. doi: 10.1016/j.apsusc.2016.07.030

    4. [4]

      She X J, Liu L, Ji H Y, Mo Z, Li Y P, Huang L Y, Du D L, Xu H, Li H M. Template-Free Synthesis of 2D Porous Ultrathin Nonmetal-Doped g-C3N4 Nanosheets with Highly Efficient Photocatalytic H2 Evolution from Water under Visible Light[J]. Appl. Catal. B, 2016,187:144-153. doi: 10.1016/j.apcatb.2015.12.046

    5. [5]

      Zhou M J, Hou Z H, Zhang L, Liu Y, Gao Q Z, Chen X B. n/n Junc-tioned g-C3N4 For Enhanced Photocatalytic H2 Generation[J]. Sustainable Energy Fuels, 2017,1(2):317-323. doi: 10.1039/C6SE00004E

    6. [6]

      Wang S J, Zhang J Q, Li B, Sun H Q, Wang S B. Engineered Graphitic Carbon Nitride-Based Photocatalysts for Visible-Light-Driven Water Splitting: A Review[J]. Energy Fuels, 2021,35(8):6504-6526. doi: 10.1021/acs.energyfuels.1c00503

    7. [7]

      Jiang Z F, Wan W M, Li H M, Yuan S Q, Zhao H J, Wong P K. A Hierarchical Z-Scheme α-Fe2O3/g-C3N4 Hybrid for Enhanced Photo-catalytic CO2 Reduction[J]. Adv. Mater., 2018,30(10)1706108. doi: 10.1002/adma.201706108

    8. [8]

      Guo S, Wang H J, Yang W, Fida H, You L M, Zhou K. Scalable Syn-thesis of Ca-Doped α-Fe2O3 with Abundant Oxygen Vacancies for Enhanced Degradation of Organic Pollutants through Peroxymonosul-fate Activation[J]. Appl. Catal. B, 2020,262118250. doi: 10.1016/j.apcatb.2019.118250

    9. [9]

      Frindy S, Sillanpää M. Synthesis and Application of Novel α-Fe2O3/Graphene for Visible-Light Enhanced Photocatalytic Degradation of RhB[J]. Mater. Des., 2020,188108461. doi: 10.1016/j.matdes.2019.108461

    10. [10]

      Zhang Z H, Hossain M F, Takahashi T. Self-Assembled Hematite (α-Fe2O3) Nanotube Arrays for Photoelectrocatalytic Degradation of Azo Dye Under Simulated Solar Light Irradiation[J]. Appl. Catal. B, 2010,95(3/4):423-429.

    11. [11]

      Geng Y X, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. Z-Scheme 2D/2D α-Fe2O3/g-C3N4 Heterojunction for Photocatalytic Oxidation of Nitric Oxide[J]. Appl. Catal. B, 2021,280119409. doi: 10.1016/j.apcatb.2020.119409

    12. [12]

      Liu J H, Zhang Y W, Lu L H, Wu G, Chen W. Self-Regenerated Solar-Driven Photocatalytic Water-Splitting by Urea Derived Gra-phitic Carbon Nitride with Platinum Nanoparticles[J]. Chem. Commun., 2012,488826e. doi: 10.1039/c2cc33644h

    13. [13]

      Huang L Y, Zhang R X, Sun X J, Chen X N. Synthesis and Charac-terization of g-C3N4/α-Fe2O3 Composites with Enhanced Photocata-lytic Activity[J]. Key Eng. Mater., 2013,575:225-228.

    14. [14]

      Li Y P, Li F T, Wang X J, Zhao J, Wei J N, Hao Y J, Liu Y. Z-Scheme Electronic Transfer of Quantum-Sized α-Fe2O3 Modified g-C3N4 Hybrids for Enhanced Photocatalytic Hydrogen Production[J]. Int. J. Hydrogen Energy, 2017,42(47):28327-28336. doi: 10.1016/j.ijhydene.2017.09.137

    15. [15]

      Wang J S, Qin C, Wang H J, Chu M N, Zada A, Zhang X L, Li J D, Raziq F, Qu Y, Jing L Q. Exceptional Photocatalytic Activities for CO2 Conversion on Al—O Bridged g-C3N4/α-Fe2O3 Z-Scheme Nano-composites and Mechanism Insight with IsotopesZ[J]. Appl. Catal. B, 2018,221:459-466. doi: 10.1016/j.apcatb.2017.09.042

    16. [16]

      Guo H W, Chen M Q, Qin Z, Wang Y A, Ma W H, Ding J. Synthesis of Z-Scheme α-Fe 2O3/g-C3N4 Composite with Enhanced Visible-Light Photocatalytic Reduction of CO2 to CH3OH[J]. J. CO2 Util., 2019,33:233-241. doi: 10.1016/j.jcou.2019.05.016

    17. [17]

      Li C M, Yu S Y, Che H N, Zhang X X, Han J, Mao Y L, Wang Y, Liu C B, Dong H J. Fabrication of Z-Scheme Heterojunction by Anchor-ing Mesoporous γ-Fe2O3 Nanospheres on g-C3N4 for Degrading Tetra-cycline Hydrochloride in Water[J]. ACS Sustainable Chem. Eng., 2018,6(12):16437-16447. doi: 10.1021/acssuschemeng.8b03500

    18. [18]

      Xu Q L, Zhu B C, Jiang C J, Cheng B, Yu J G. Constructing 2D/2D Fe2O3/g-C3N4 Direct Z-Scheme Photocatalysts with Enhanced H2 Generation Performance[J]. Sol. RRL, 2018,2(3)1800006. doi: 10.1002/solr.201800006

    19. [19]

      Zhou P, Yu J G, Jaroniec M. All-Solid-State Z-Scheme Photocatalytic Systems[J]. Adv. Mater., 2014,26(29):4920-4935. doi: 10.1002/adma.201400288

    20. [20]

      She X J, Wu J J, Xu H, Zhong J, Wang Y, Song Y H, Nie K Q, Liu Y, Yang Y C, Rodrigues M T F, Vajtai R, Lou J, Du D L, Li H M, Ajayan P M. High Efficiency Photocatalytic Water Splitting Using 2D α-Fe2O3/g-C3N4 Z-Scheme Catalysts[J]. Adv. Mater., 2017,7(17)1700025.

    21. [21]

      Nai J W, Lou X W. Hollow Structures Based on Prussian Blue and Its Analogs for Electrochemical Energy Storage and Conversion[J]. Adv. Mater., 20181706825.

    22. [22]

      Fornasieri G, Aouadi M, Durand P, Beaunier P, Rivière E, Bleuzen A. Fully Controlled Precipitation of Photomagnetic CoFe Prussian Blue Analogue Nanoparticles within the Ordered Mesoporosity of Sil-ica Monoliths[J]. Chem. Commun., 2010,46(42):8061-8063. doi: 10.1039/c0cc02439b

    23. [23]

      Huang Y X, Xie M, Wang Z H, Jiang Y, Yao Y, Li S J, Li Z H, Wu F, Chen R J. A Chemical Precipitation Method Preparing Hollow-Core-Shell Heterostructures Based on the Prussian Blue Analogs as Cathode for Sodium-Ion Batteries[J]. Small, 2018,14(28)1801246. doi: 10.1002/smll.201801246

    24. [24]

      Hu M, Jiang J S, Ji R P, Zeng Y. Prussian Blue Mesocrystals Pre-pared by a Facile Hydrothermal Method[J]. CrystEngComm, 2009,11(11):2257-2259. doi: 10.1039/b911613n

    25. [25]

      Jomma E Y, Ding S N. One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor[J]. Sensors, 2016,16(2):243-243. doi: 10.3390/s16020243

    26. [26]

      JIANG Y Z, LI J C, FU S B, YU Y, LIU H Q, LI L. Synthesis and Structure Characterization of Prussian Blue Based Nanohybrid Mem-brane Material[J]. New Chemical Materials, 2015,43(12):58-63.

    27. [27]

      Dong F, Li Y H, Wang Z Y, Ho W K. Enhanced Visible Light Photo-catalytic Activity and Oxidation Ability of Porous Graphene-like g-C3N4 Nanosheets via Thermal Exfoliation[J]. Appl. Surf. Sci., 2015,358:393-403. doi: 10.1016/j.apsusc.2015.04.034

    28. [28]

      Hu J, Zhao X, Chen W, Chen Z. Enhanced Charge Transport and Increased Active Sites on α-Fe2O3 (110) Nanorod Surface Containing Oxygen Vacancies for Improved Solar Water Oxidation Performance[J]. ACS Omega, 2018,3:14973-14980. doi: 10.1021/acsomega.8b01195

    29. [29]

      Liu J H, Zhang T K, Wang Z C, Dawson G, Chen W. Simple Pyroly-sis of Urea into Graphitic Carbon Nitride with Recyclable Adsorp-tion and Photocatalytic Activity[J]. J. Mater. Chem., 2011,21(38):14398-14401. doi: 10.1039/c1jm12620b

    30. [30]

      Yang X L, Qian F F, Zou G J, Li M L, Lu J R, Li Y M, Bao M T. Fac-ile Fabrication of Acidified g-C3N4/g-C3N4 Hybrids with Enhanced Photocatalysis Performance under Visible Light Irradiation[J]. Appl. Catal. B, 2016,193:22-35. doi: 10.1016/j.apcatb.2016.03.060

    31. [31]

      Flak D, Chen Q L, Mun B S, Liu Z, Rekas M, Braun A. In Situ Ambi-ent Pressure XPS Observation of Surface Chemistry and Electronic Structure of α-Fe2O3 and γ-Fe2O3 Nanoparticles[J]. Appl. Surf. Sci., 2018,455:1019-1028. doi: 10.1016/j.apsusc.2018.06.002

    32. [32]

      Cheng R L, Zhang L X, Fan X Q, Wang M, Li M L, Shi J L. One-Step Construction of FeOx Modified g-C3N4 for Largely Enhanced Visible-Light Photocatalytic Hydrogen Evolution[J]. Carbon, 2016,101:62-70. doi: 10.1016/j.carbon.2016.01.070

    33. [33]

      Yu J G, Ran J R. Facile Preparation and Enhanced Photocatalytic H2-Production Activity of Cu(OH)2 Cluster Modified TiO2[J]. Energy Environ. Sci., 2011,4(4):1364-1371. doi: 10.1039/c0ee00729c

    34. [34]

      He Y M, Wang Y, Zhang L H, Teng B T, Fan M H. High-Efficiency Conversion of CO2 to Fuel over ZnO/g-C3N4 Photocatalyst[J]. Appl. Catal. B, 2015,168:1-8.

    35. [35]

      Ansari M B, Jin H L, Parvin M N, Park S E. Mesoporous Carbon Nitride as a Metal-Free Base Catalyst in the Microwave Assisted Knoevenagel Condensation of Ethylcyanoacetate with Aromatic Aldehydes[J]. Catal. Today, 2012,185(1):211-216. doi: 10.1016/j.cattod.2011.07.024

    36. [36]

      Tian N, Huang H W, He Y, Guo Y X, Zhang T R, Zhang Y H. Mediator-Free Direct Z-Scheme Photocatalytic System: BiVO4/g-C3N4 Organic-Inorganic Hybrid Photocatalyst with Highly Efficient Visible-Light-Induced Photocatalytic Activity[J]. Dalton Trans., 2015,44(9):4297-4307. doi: 10.1039/C4DT03905J

    37. [37]

      Kadi M W, Mohamed R M, Ismail A A, Bahnemann D W. Perfor-mance of Mesoporous α-Fe2O3/g-C3N4 Heterojunction for Photore-duction of Hg under Visible Light Illumination[J]. Ceram. Int., 2020,46(14):23098-23106. doi: 10.1016/j.ceramint.2020.06.087

  • 加载中
    1. [1]

      Rui LIUXinjun ZHOUTao WANG . Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033

    2. [2]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    3. [3]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    4. [4]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    5. [5]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    6. [6]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Jinhui JiangJiaqi SunYongyi ChenLei ZhangPengyu Dong . W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100145-0. doi: 10.1016/j.actphy.2025.100145

    9. [9]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    10. [10]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Ruiyun LiuPing WangXuefei WangFeng ChenHuogen Yu . Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100137-0. doi: 10.1016/j.actphy.2025.100137

    13. [13]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    14. [14]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    17. [17]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    18. [18]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    19. [19]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    20. [20]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

Metrics
  • PDF Downloads(13)
  • Abstract views(1514)
  • HTML views(324)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return