Citation: Feng-He ZHAO, Chong-Min ZHANG. Application of Monodisperse SiO2 Nanoparticles Composite Gel Electrolytes[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 313-320. doi: 10.11862/CJIC.2022.040 shu

Application of Monodisperse SiO2 Nanoparticles Composite Gel Electrolytes

  • Corresponding author: Feng-He ZHAO, work3857@163.com
  • Received Date: 25 August 2021
    Revised Date: 13 December 2021

Figures(6)

  • In this work, the well-monodispersed SiO2 nanoparticles (about 130 nm) were used as the filler while the polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) was used as the polymer matrix. The monodisperse SiO2 composite gel polymer electrolytes (MCGPEs) were prepared by a simple method and applied to lithium batteries. SiO2 has better dispersion and uniformity in the polymer matrix. Compared with the conventional composite gel polymer electrolytes (GPEs) and commercial SiO2 composite gel polymer electrolytes (CGPEs), MCGPEs exhibited the more excellent ability of liquid absorption and better lithium-ion migration ability. Moreover, the cells which used MCGPEs as electrolytes maintained a high specific capacity of 121.1 mAh·g-1 after 300 cycles at 1.0C, showing a satisfactory cycle performance. Meanwhile, the rate performance of MCGPEs was also excellent. The cells using MCGPEs owned the specific capacity of 135 mAh·g-1 at 10C which was higher than GPEs cells (76.2 mAh·g-1).
  • 加载中
    1. [1]

      Sui Y M, Liu C F, Masse R C, Neale Z G, Atif M, AlSalhi M, Cao G Z. Dual-Ion Batteries: The Emerging Alternative Rechargeable Batteries[J]. Energy Storage Mater., 2020,25:1-32.  

    2. [2]

      Costa , C M, Lee Y H, Kim J H, Lee S Y, Lanceros-Mendez S. Recent Advances on Separator Membranes for Lithium-Ion Battery Applications: From Porous Membranes to Solid Electrolytes[J]. Energy Storage Mater., 2019,22:346-375.  

    3. [3]

      Qian J F, Adams B D, Zheng J M, Xu W, Henderson W A, Wang J, Bowden M E, Xu S C, Hu J Z, Zhang J G. Anode-Free Rechargeable Lithium Metal Batteries[J]. Adv. Funct. Mater., 2016,26:7094-7102. doi: 10.1002/adfm.201602353

    4. [4]

      Lin D, Liu Y, Cui Y. Reviving the Lithium Metal Anode for High-Energy Batteries[J]. Nat. Nanotechnol., 2017,12(3):194-206. doi: 10.1038/nnano.2017.16

    5. [5]

      Ren W H, Ding C F, Fu X W, Huang Y. Advanced Gel Polymer Electrolytes for Safe and Durable Lithium Metal Batteries: Challenges, Strategies, and Perspectives[J]. Energy Storage Mater., 2020,34:515-535.  

    6. [6]

      Ghazi Z A, Sun Z, Sun C, Qi F, An B, Li F, Cheng H M. Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries[J]. Small, 2019,15(35)e1900687. doi: 10.1002/smll.201900687

    7. [7]

      Zhao Q, Stalin S, Zhao C Z, Archer L A. Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries[J]. Nat. Rev. Mater., 2020,5(3):1-24. doi: 10.1038/s41578-019-0165-5

    8. [8]

      Pahari D, Puravankara S. Greener, Safer, and Sustainable Batteries: An Insight into Aqueous Electrolytes for Sodium-Ion Batteries[J]. ACS Sustainable Chem. Eng., 2020,8(29):10613-10625. doi: 10.1021/acssuschemeng.0c02145

    9. [9]

      Ding X, Huang X B, Jin J L, Ming H, Wang L M, Ming J. Advanced and Safer Lithium-Ion Battery Based on Sustainable Electrodes[J]. J. Power Sources, 2018,379:53-59. doi: 10.1016/j.jpowsour.2018.01.027

    10. [10]

      Yuan M Q, Liu K. Rational Design on Separators and Liquid Electrolytes for Safer Lithium-Ion Batteries[J]. J. Energy Chem., 2020,43(4):70-82.

    11. [11]

      Cheng X, Pan J, Zhao Y, Liao M, Peng H S. Gel Polymer Electrolytes for Electrochemical Energy Storage[J]. Adv. Energy Mater., 2018,81702184. doi: 10.1002/aenm.201702184

    12. [12]

      Zhai Y Y, Wang X W, Chen Y F, Sang X, Liu H Q, Sheng J L, Wu Y Q, Wang X Y, Li L. Multiscale-Structured Polyvinylidene Fluoride/Polyacrylonitrile/Vermiculite Nanosheets Fibrous Membrane with Uniform Li+ Flux Distribution for Lithium Metal Battery[J]. J. Membr. Sci., 2021,621118996. doi: 10.1016/j.memsci.2020.118996

    13. [13]

      BU A X, TAN Y, FANG R P, LI F, PEI S F, REN W C. A Graphene/PVDF/PP Multilayer Composite Separator for Long-Life and High Power Lithium-Ion batteries[J]. New Carbon Mater., 2017,32(1):63-70.  

    14. [14]

      Zhang K, Xu L L, Jiang J G, Calin N, Lam K F, Zhang S J, Wu H H, Wu G D, Albela B, Bonneviot L. Facile Large-Scale Synthesis of Monodisperse Mesoporous Silica Nanospheres with Tunable Pore Structure[J]. J. Am. Chem. Soc., 2013,135(7):2427-2430. doi: 10.1021/ja3116873

    15. [15]

      Zhao H J, Deng N P, Kang W M, Li Z, Wang G, Cheng B W. Highly Multiscale Structural Poly(vinylidene fluoridehexafluoropropylene)/Poly-m-phenyleneisophthalamide Separator with Enhanced Interface Compatibility and Uniform Lithium-Ion Flux Distribution for Dendrite-Proof Lithium-Metal Batteries[J]. Energy Storage Mater., 2020,26:334-348. doi: 10.1016/j.ensm.2019.11.005

    16. [16]

      Gao S, Wang K L, Wang R X, Jiang M, Han J, Gu T T, Cheng S J, Jiang K. Poly(vinylidene fluoride)-Based Hybrid Gel Polymer Electrolytes for Additive-Free Lithium Sulfur Batteries[J]. J. Mater. Chem. A, 2017,5(34):17889-17895. doi: 10.1039/C7TA05145J

    17. [17]

      Bae J, Li Y, Zhang J, Zhou X, Zhao F, Shi Y, Goodenough J B, Yu G. A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte[J]. Angew. Chem. Int. Ed., 2018,57(8):2096-2100.

    18. [18]

      Zheng J X, Lu J, Amine K, Pan F. Depolarization Effect to Enhance the Performance of Lithium Ions Batteries[J]. Nano Energy, 2017,33:497-507.

    19. [19]

      Zhao Y B, Bai Y, Bai Y P, An M Z, Chen G R, Li W D, Li C, Zhou Y F. A Rational Design of Solid Polymer Electrolyte with High Salt Concentration for Lithium Battery[J]. J. Power Sources, 2018,407:23-30. doi: 10.1016/j.jpowsour.2018.10.045

    20. [20]

      Sannier L, Bouchet R, Rosso M, Tarascon J M. Evaluation of GPE Performances in Lithium Metal Battery Technology by Means of Simple Polarization Tests[J]. J. Power Sources, 2006,158(1):564-570. doi: 10.1016/j.jpowsour.2005.09.026

    21. [21]

      Yan C, Xu R, Qin J L, Yuan H, Xiao Y, Xu L, Huang J Q. 4.5 V High-Voltage Rechargeable Batteries Enabled by the Reduction of Polarization on the Lithium Metal Anode[J]. Angew. Chem. Int. Ed., 2019,58(43):15164-15164.  

    22. [22]

      Kurc B, Jesionowski T. Modified TiO2-SiO2 Ceramic Filler for a Composite Gel Polymer Electrolytes Working with LiMn2O4[J]. J. Solid State Electrochem., 2015,19(5):1427-1435. doi: 10.1007/s10008-015-2762-6

    23. [23]

      Zhu Y S, Yang Y Q, Fu L J, Wu Y P. A Porous Gel-Type Composite Membrane Reinforced by Nonwoven: Promising Polymer Electrolyte with High Performance for Sodium Ion Batteries[J]. Electrochim. Acta, 2017,224:405-411. doi: 10.1016/j.electacta.2016.12.030

    24. [24]

      Qin H F, Fu K, Zhang Y, Ye Y H, Song M Y, Kuang Y D, Jang S H, Jiang F, Cui L F. Flexible Nanocellulose Enhanced Li+ Conducting Membrane for Solid Polymer Electrolyte[J]. Energy Storage Mater., 2020,28(6058):293-299. doi: 10.1016/j.ensm.2020.03.019

    25. [25]

      Liao H, Chen H, Zhou F, Zhang Z. A Novel SiO2 Nanofiber-Supported Organic-Inorganic Gel Polymer Electrolyte for Dendrite-Free Lithium Metal Batteries[J]. J. Mater. Sci., 2020,55(2018):9504-9515. doi: 10.1007/s10853-020-04634-2

  • 加载中
    1. [1]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    2. [2]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    3. [3]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    4. [4]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    5. [5]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    6. [6]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    7. [7]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    8. [8]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    9. [9]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    10. [10]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    11. [11]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    12. [12]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    15. [15]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    18. [18]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(10)
  • Abstract views(977)
  • HTML views(292)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return